• 제목/요약/키워드: Lithium Polymer Battery

검색결과 233건 처리시간 0.027초

Fabrication of Carbon Microcapsules Containing Silicon Nanoparticles-Carbon Nanotubes Nanocomposite for Anode in Lithium Ion Battery

  • Bae, Joon-Won;Park, Jong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.3025-3032
    • /
    • 2012
  • Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT@C) have been fabricated by a two step polymerization method. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were prepared with a wet-type beadsmill method. A polymer, which is easily removable by a thermal treatment (intermediate polymer) was polymerized on the outer surfaces of Si-CNT nanocomposites. Subsequently, another polymer, which can be carbonized by thermal heating (carbon precursor polymer) was incorporated onto the surfaces of pre-existing polymer layer. In this way, polymer precursor spheres containing Si-CNT nanohybrids were produced using a two step polymerization. The intermediate polymer must disappear during carbonization resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT@C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT@C microcapsules were measured with a lithium battery half cell tests.

리튬이차전지용 고분전해질의 무기물의 첨가에 대한 영향 (The Effect of Inorganic Material in Polymer Electrolyte for Lithium Secondary Battery)

  • 박수길;박종은;이홍기;이주성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.822-824
    • /
    • 1998
  • The lithium polymer battery with polymer electrolyte is expected as a safe and long cycle life battery. This paper reports primarily the recent development results of a solid polymer electrolyte, which is a key point of the secondary battery system. The new type of polymer electrolyte was prepared under a dry Ar atmosphere by dissolving $LiCIO_4$ in a matrix of EC, PC and then dispersing polyacrylonitrile(PAN). Also adding some inorganic filler $Al_2O_3$. The dispersed solution heated at $120^{\circ}C$. The polymer electrolyte were characterized by EIS(Electrochemical Impedance Spectroscopy), TGA(Thermo Gravimetric analysis), DMA(Dynamic Mechanical Analyzer), DSC (Differential Scanning Calorimetry). The lithium ion yield is 0.29 when PAN-$Al_2O_3$ which was applied DC 5mV. The ionic conductivity of PAN, PAN-$Al_2O_3$ polymer electrolytes were showed $1.0{\times}10^{-4}S/cm$, $8.4{\times}10^{-4}S/cm$ at room temperature. When inorganic filler was added in the polymer electrolyte, ionic conductivity and lithium yield more larger than without inorganic filler.

  • PDF

칼만 필터를 이용한 리튬-폴리머 배터리의 SOC 추정 (A SOC Estimation using Kalman Filter for Lithium-Polymer Battery)

  • 장기욱;정교범
    • 전력전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.222-229
    • /
    • 2012
  • The SOC estimation method based on Kalman Filter(KF) requires the accurate battery model to express the electrical characteristics of the battery. However, the performance of KF SOC estimator can hardly be improved because of the nonlinear characteristic of the battery. This paper proposes the new KF SOC estimator of Lithium-Polymer Battery(LiPB), which considers the variation of parameters based on the hysteresis effect, the magnitude of SOC, the charging/discharging mode and the on/off load conditions. The proposed SOC estimation method is verified with the PSIM simulation combined the experimental data of the LiPB.

리튬 이온 폴리머 전지용 Tin oxide-flyash Composite 전극의 전기화학적 특성 (Electrochemical Properties of Tin oxide-flyash Composite for Lithium Ion Polymer Battery)

  • 김종욱;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.88-90
    • /
    • 2003
  • The purpose of this study is to research and develop tin oxide-flash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry and charge/discharge cycling of SnO-flyash/SPE/Li cells. The first discharge capacity of SnO-flyash composite anode was 720 mAh/g. The discharge capacity of SnO-flyash composite anode 412 and 314 mAh/g at cycle 2 and 10 at room temperature, respectively. The SnO-flyash composite anode with PVDF-PMMA-PC-EC-$LiClO_4$ electrolyte showed good capacity with cycling.

  • PDF

Grid-Connected Peak Load Compensation System Based on Lithium Polymer Battery Energy Storage System

  • 정두용;지용혁;이수원;원충연;서광덕;정용채
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2009년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.265-267
    • /
    • 2009
  • we proposed a grid connected peak load compensation system with high discharge current characteristics based on lithium polymer battery for development of the next generation power-station. The lithium polymer battery has faster discharge current characteristics than conventional battery, so that can compensate high active power demanded by load in a short time using the low capacity battery bank. Therefore, it is possible to control power leveling of grid by measuring storage energy of battery and active power which is needed from load. The validity of proposed system was verified through the simulation and experiment.

  • PDF

구간선형 모델링 기반의 리튬-폴리머 배터리 SOC 관측기 (SOC Observer based on Piecewise Linear Modeling for Lithium-Polymer Battery)

  • 정교범
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.344-350
    • /
    • 2015
  • A battery management system requires accurate information on the battery state of charge (SOC) to achieve efficient energy management of electric vehicle and renewable energy systems. Although correct SOC estimation is difficult because of the changes in the electrical characteristics of the battery attributed to ambient temperature, service life, and operating point, various methods for accurate SOC estimation have been reported. On the basis of piecewise linear (PWL) modeling technique, this paper proposes a simple SOC observer for lithium-polymer batteries. For performance evaluation, the SOC estimated by the PWL SOC observer, the SOC measured by the battery-discharging experiment and the SOC estimated by the extended Kalman filter (EKF) estimator were compared through a PSIM simulation study.

Electric and Electrochemical Characteristic of PMMA-PEO Gel Electrolyte for Rechargeable Lithium Battery

  • 박수길;박종은;이홍기;이주성
    • 한국전기전자재료학회논문지
    • /
    • 제11권10호
    • /
    • pp.768-772
    • /
    • 1998
  • The new type polymer electrolyte composed of polymethyl methacrylate(PMMA) - polyethy leneoxide(PEO) contain $LiClO_4$ -EC/PC was developed for the weightless and long or life time of lithium polymer batery system with using polyaniline electrode. the gel type electrolytes were prepared by PMMA with PEO at different lithium salts in the glove box. The minimum thickness of PMMA-PEO gel electrolyte for the slim type is about(400~450$\mu\textrm{m}$. These gel electrolyte showed good compatibility with lithium electrode. The test cell Li/polymer electrolyte/polyaniline solid state cell which was prepared by different lithium salt was researched by electrochemical technique.

  • PDF

웨어러블 기기의 배터리화재사례와 실험을 통한 화재위험성 분석 (Analysis of Fire Risk through Battery Fire Cases and Experiments of Wearable Devices)

  • 이정일
    • 대한안전경영과학회지
    • /
    • 제22권2호
    • /
    • pp.47-55
    • /
    • 2020
  • This study analyzed ignition probability about Lithium-polymer batteries of what variously were being produced wearable devices recently. The study analyzed ignition probability by PCM(Protection Circuit Module) operating state and overcharged, over-discharged, exposed to high temperatures of Lithium polymer batteries, analyzing wearable devices on the market. Then it classified experimental results to implement analysis comparison about weight, X-ray imaging, battery decomposition. With these experiments, the study analyzed combustion-possibility and fire patterns. These statistics will be used to measure and verify the cause of a fire when identify wearable devices using Lithium-polymer batteries.

중대형 리튬폴리머 2차전지용 충방전기 개발 (Design of a cycler system for large capacity lithium-polymer battery)

  • 오동섭;오성업;이종윤;박민호;성세진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.82-86
    • /
    • 2004
  • In this paper, a cycler system for the Lithium-Polymer battery with the large capacity of 120Ah is presented. This system is constituted as the two units for the charging and discharging. The Lithium-Polymer battery should be charged in CC and CV mode, and it is required a very high precision control of the voltage and current for the charging unit. To decrease the switching noises and harmonics, parallel operation method is adopted and utilized in the power conversion module. The discharging unit has a link AC system function to return the discharging energy of battery to AC line and has comparatively less thermal loss. These units are designed to be controlled and monitored by personal computer. The total system for the battery charging and discharging is described and presented.

  • PDF