• Title/Summary/Keyword: Lithium Ion

Search Result 1,357, Processing Time 0.03 seconds

Study on a screening method of retired Lithium Ion battery cells for recycling (폐 리튬이온 배터리 셀의 재활용을 위한 스크리닝 방식 고찰)

  • Lee, Chun-Gu;Park, Joung-Hu;Lee, Seong-Jun;Kim, Jong-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.225-227
    • /
    • 2018
  • 일반적으로 리튬이온은 배터리들은 각 배터리마다 고유의 전기화학적 특성을 갖고 있으며 이러한 특성들로 인해서 직렬 또는 병렬로 패키징 되어서 팩으로 사용 될 때 각 셀 간의 전압 불균형이 발생하게 된다. 셀 벨런싱 회로 같은 셀 간 불균형을 회복시켜주는 기능이 없다면 배터리 팩 내의 셀 간 전압 불균형은 시간이 지남에 따라 더 커지게 되고 이는 배터리 팩의 노화를 가속 시키거나 배터리 팩의 성능을 저하시키는 원인이 된다. 이는 폐 리튬이온 배터리 팩을 재활용하는데 있어서도 반드시 고려해야하는 사항으로서 재활용 팩의 사용시간에 영향을 끼칠 수 있다. 위의 문제를 극복하기 위해서는 배터리 팩을 만들기 전에 스크리닝을 통해서 전기화학적 성분이 유사한 배터리들을 팩으로 만드는 것이 필요하다. 일반적으로 프레시 배터리의 용량은 거의 비슷하기 때문에 프레시 배터리 용량은 프레시 배터리를 스크리닝 하기 위한 많은 기준들 중에서 가중치가 크지 않지만 폐 리튬이온 배터리들은 각 배터리마다 고유의 전기화학적 특성을 갖을 뿐만 아니라 각 배터리마다 상이한 배터리 용량을 갖고 있기 때문에 각 배터리의 용량에 프레시 배터리를 스크리닝 할 때보다 큰 가중치를 두어 스크리닝 할 필요가 있다. 본 논문에서는 같은 전류 프로파일로 노화된 배터리 팩 내의 셀들의 전기화학적 특성을 분석하여 폐배터리 셀들을 재활용하기 위한 스크리닝 방법에 대해서 고찰한다.

  • PDF

Electrochemical Properties of LiCoO2 Prepared by Mechanochemical Process (Mechanochemical Process로 제조된 LiCoO2의 전기화학적 특성)

  • Cho, Byung-Won;Lee, Joong Kee;Lee, Jae-Ryong;Kim, Su-Jin;Lee, Kwan-Young;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.69-75
    • /
    • 2008
  • Discharge capacity of $LiCoO_2$ in preparation by mechanochemical process decreased remarkably over 4.3V. However, Zr coating of $LiCoO_2$ showed very stable electrochemical properties up to 4.5V. Zr coating of $LiCoO_2$ in this experiment showed the discharge capacity of 197 mAh/g at 3.0-4.5V, and it maintained 96% of the initial discharge capacity after 50 cycle of charge/discharge.

Synthesis of a New Hexadendates Schiff's Base and Its Application in the Fabrication of a Highly Selective Mercury(II) Sensor

  • Ganjali, M.R.;Norouzi, P.;Alizadeh, T.;Salavati-Niasari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.68-72
    • /
    • 2007
  • A new PVC membrane potentiometric sensor that is highly selective to Hg2+ ions was prepared, using bis(2-hydroxybenzophenone) butane-2,3-dihydrazone (HBBD) as an excellent hexadendates neutral carrier. The sensor works satisfactorily in the concentration range of 1.0 × 10-6 to 1.0 × 10-1 mol L-1 (detection limit 4 × 10-7 mol L-1) with a Nernstian slope of 29.7 mV per decade. This electrode showed a fast response time (~8 s) and was used for at least 12 weeks without any divergence. The sensor exhibits good Hg2+ selectivity for a broad range of common alkali, alkaline earth, transition and heavy metal ions (lithium, sodium, potassium, magnesium, calcium, copper, nickel, cobalt, zinc, cadmium, lead and lanthanum). The electrode response is pH independent in the range of 1.5-4.0. Furthermore, the developed sensor was successfully used as an indicator electrode in the potentiometric titration of mercury ions with potassium iodide and the direct determination of mercury in some binary and ternary mixtures.

Electrochemical and Thermal Property Enhancement of Natural Graphite Electrodes via a Phosphorus and Nitrogen Incorporating Surface Treatment

  • Kim, Kyungbae;Kim, Han-Seul;Seo, Hyungeun;Kim, Jae-Hun
    • Corrosion Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2020
  • An efficient wet process approach to modifying natural graphite (NG) electrodes for Li-ion batteries is introduced in this paper. With homogeneous mixing and thermal decomposition of NG with diammonium phosphate ((NH4)2HPO4), phosphorus and nitrogen were successfully incorporated into the surface layer of NG particles. Electron microscopy and X-ray photoelectron spectroscopy analyses demonstrated that the surface was well modified by this process. As a result, the treated NG electrodes exhibited much improved electrochemical performance over pristine NG at two different temperatures: 25 ℃ and 50 ℃. Excellent capacity retention of 95.6% was obtained after 100 cycles at 50 ℃. These enhanced properties were confirmed in a morphology analysis on the cross-sections of the NG electrodes after galvanostatic cycling. The improved cycle and thermal stabilities can be attributed to the surface treatment with phosphorus and nitrogen; the treatment formed a stable solid electrolyte interphase layer that performed well when undergoing Li insertion and extraction cycling.

Changes in the Shape and Properties of the Precursor of the Rich-Ni Cathode Materials by Ammonia Concentration (암모니아 농도에 따른 Rich-Ni 양극 소재의 전구체 형태와 특성 변화)

  • Park, Seonhye;Hong, Soonhyun;Jeon, Hyeonggwon;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.636-640
    • /
    • 2020
  • Due to the serious air pollution problem, interest in eco-friendly vehicles is increasing. Solving the problem of pollution will necessitate the securing of high energy storage technology for batteries, the driving force of eco-friendly vehicles. The reason for the continuing interest in the transition metal oxide LiMO2 as a cathode material with a layered structure is that lithium ions reveal high mobility in two-dimensional space. Therefore, it is important to investigate the effective intercalation and deintercalation pathways of Li+, which affect battery capacity, to understand the internal structure of the cathode particle and its effect on the electrochemical performance. In this study, for the cathode material, high nickel Ni0.8Co0.1Mn0.1(OH)2 precursor is synthesized by controlling the ammonia concentration. Thereafter, the shape of the primary particles of the precursor is investigated through SEM analysis; X-ray diffraction analysis is also performed. The electrochemical properties of LiNi0.8Co0.1Mn0.1O2 are evaluated after heat treatment.

Cycle-life Test Time Reduction in Secondary Rechargeable Batteries by Combining Different Types of Acceleration (서로 다른 가속기법의 결합을 통한 2차 전지 사이클 시험 시간의 단축)

  • Park, Jong-In;Park, Jung-Won;Jung, Min-Ho;Huh, Yang-Hyun;Bae, Suk-Joo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.4
    • /
    • pp.153-161
    • /
    • 2008
  • 신뢰성 평가 시험은 종종 성능 평가에 장기간의 시간이 요구되며, 전체 생산비용까지 증가시키는 문제점을 안고 있다 스트레스를 이용한 가속수명시험은 제품의 신뢰성 고장과 밀접한 관련이 있는 고장 메커니즘의 촉진을 통해 고장에 이르는 기간을 단축함으로써 신뢰성 평가의 효율성을 도모할 수 있다. 본 연구에서는 이러한 스트레스 가속 시험에 빈도가속(Usage-Rate Acceleration) 또는 판정가속(Tightening Critical-Values) 등을 결합하여 한층 높은 가속효과를 도모하는 방법을 제안하고, 국내에서 생산되고 있는 2차 전지 제품에 대한 실제 시험 사례분석을 통해 결합된 가속방법의 효과를 실증적으로 보여주고 있다.

A Case Study on Operation of Energy Management System Connected with Renewable Energy (신재생에너지 연계형 에너지관리장치의 운영 사례 연구)

  • Cho, Jai Young;Ra, In-Ho
    • Smart Media Journal
    • /
    • v.7 no.2
    • /
    • pp.71-77
    • /
    • 2018
  • This paper proposes the components of the energy management system (EMS) for optimum operation of renewable energy and associated energy storage system (ESS), the functions to be considered in designing, the analysis of operational effects, and finally the reduction of electricity costs. To accomplish the objectives, a lithium-ion battery system and an energy management system have installed in a PV system, and it presents the results analyzed with operation data for a year. To increase the system operation efficiency, we propose the effect that EMS is used to replace the demand power at the peak time with the charge power at the light load time, which suggests the influence of contributing to the charge benefit and load leveling according to the ESS tariff.

Preparation and Characteristics of Li4Ti5O12 Anode Material for Hybrid Supercapacitor

  • Lee, Byung-Gwan;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.207-211
    • /
    • 2012
  • Spinel-$Li_4Ti_5O_{12}$ was successfully synthesized by a solid-phase method at 800, 850, and $900^{\circ}C$ according to the $Li_4Ti_5O_{12}$ cubic spinel phase structure. To achieve higher EDLC energy density with the $Li_4Ti_5O_{12}$, the negative electrode of the hybrid supercapacitor was studied in this work. The electrochemical performances of the hybrid supercapacitor and EDLC were characterized by constant current discharge curves, c-rate, and cycle performance testing. The capacitance (1st cycle) of the hybrid supercapacitor and EDLC was 209 and 109 F, respectively, which is higher than EDLC. The capacitance of the hybrid supercapacitor decreases from 209 F to 101 F after 20 cycles when discharged at several specific current densities ranging from 1 to 10 A. In contrast, capacitance of the EDLC hardly decreases after 20 cycles. Results show that hybrid supercapacitor benefits from the high rate capability of supercapacitor and high capacity of the battery. Findings also prove that the hybrid supercapacitor is an energy storage device where the supercapacitor and the Li ion secondary battery coexist in one cell system.

A Modularized Charge Equalizer Using the Magnetizing Energy of the Multi-Winding Transformer (다권선 변압기의 자화 에너지를 이용한 모듈화 전하 균일 장치)

  • Lim, Chang-Soon;Hyun, Dong-Seok;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.393-400
    • /
    • 2012
  • The modularized equalizers normally use additional components among the modules in the long series-connected lithium-ion battery string. In these approaches, the overall systems are heavy, bulky, and high-priced. Furthermore, the losses related to additional components decrease the system efficiency. To avoid these problems, a modularized equalizer, which has no additional components among the modules, is required. This paper proposes a novel control scheme using the magnetizing energy of the multi-winding transformer for the module equalization. In this scheme, the high duty cycle is applied to the module where the voltage is higher than the reference voltage and the low duty cycle is applied to the module where the voltage is lower than the reference voltage. Due to the different duty cycle, more electric charges are transferred from high voltage module to the low voltage module during the turn-off switching interval. Using the proposed control scheme, the equalizer system does not suffer from the size, cost, and loss related to the modularization. The experimental results are provided to verify the effectiveness of the proposed modularized equalizer.

A Direct Cell-to-Cell Charge Balancing Circuit for the EV Battery Module (전기자동차 배터리 모듈용 직접 셀 전하 균등화 회로)

  • Pham, Van-Long;Nguyen, Kim-Hung;Basit, Khan Abdul;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.401-402
    • /
    • 2015
  • In this paper a direct cell-to-cell charge balancing circuit which can transfer the charge from any cell to any cell in the battery string is introduced. In the proposed topology the energy in the high voltage cell is transferred to the low voltage cell through the simple operation of a dc-dc converter to get fast equalization. Furthermore, the charge equalization can be performed regardless of the battery module operation whether it is being charged, discharged or relaxed. The monitoring circuit composed of a DSP and a battery monitoring IC is designed to monitor the cell voltage and protect the battery. In order to demonstrate the advantages of the proposed topology, a prototype circuit was designed and applied to 12 Lithium-Ion battery module. It has been verified with the experiments that the charge equalization time of the proposed method was shortest compared with those of other methods.

  • PDF