DOI QR코드

DOI QR Code

Electrochemical and Thermal Property Enhancement of Natural Graphite Electrodes via a Phosphorus and Nitrogen Incorporating Surface Treatment

  • Kim, Kyungbae (School of Materials Science and Engineering, Kookmin University) ;
  • Kim, Han-Seul (School of Materials Science and Engineering, Kookmin University) ;
  • Seo, Hyungeun (School of Materials Science and Engineering, Kookmin University) ;
  • Kim, Jae-Hun (School of Materials Science and Engineering, Kookmin University)
  • Received : 2019.11.06
  • Accepted : 2019.11.29
  • Published : 2020.02.28

Abstract

An efficient wet process approach to modifying natural graphite (NG) electrodes for Li-ion batteries is introduced in this paper. With homogeneous mixing and thermal decomposition of NG with diammonium phosphate ((NH4)2HPO4), phosphorus and nitrogen were successfully incorporated into the surface layer of NG particles. Electron microscopy and X-ray photoelectron spectroscopy analyses demonstrated that the surface was well modified by this process. As a result, the treated NG electrodes exhibited much improved electrochemical performance over pristine NG at two different temperatures: 25 ℃ and 50 ℃. Excellent capacity retention of 95.6% was obtained after 100 cycles at 50 ℃. These enhanced properties were confirmed in a morphology analysis on the cross-sections of the NG electrodes after galvanostatic cycling. The improved cycle and thermal stabilities can be attributed to the surface treatment with phosphorus and nitrogen; the treatment formed a stable solid electrolyte interphase layer that performed well when undergoing Li insertion and extraction cycling.

Keywords

References

  1. N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Mater. Today, 18, 252 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
  2. M. Endo, C. Kim, K. Nishimura, T. Fujino, and K. Miyashita, Carbon, 38, 183 (2000). https://doi.org/10.1016/S0008-6223(99)00141-4
  3. J. M. Tarascon and M. Armand, Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
  4. P. Verma, P. Maire, and P. Novak, Electrochim. Acta, 55, 6332 (2010). https://doi.org/10.1016/j.electacta.2010.05.072
  5. N. A. Kaskhedikar and J. Maier, Adv. Mater. 21, 2664 (2009). https://doi.org/10.1002/adma.200901079
  6. S. Flandrois and B. Simon, Carbon, 37, 165 (1999). https://doi.org/10.1016/S0008-6223(98)00290-5
  7. Y. P. Wu, E. Rahm, and R. Holze, J. Power Sources, 114, 228 (2003). https://doi.org/10.1016/S0378-7753(02)00596-7
  8. C. Wang, A. J. Appleby, and F. E. Little, J. Electroanal. Chem., 497, 33 (2001). https://doi.org/10.1016/S0022-0728(00)00447-2
  9. T. Waldmann, M. Wilka, M. Kaper, M. Fleischhammer, and M. Wohlfahrt-Mehrens, J. Power Sources, 262, 129 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.112
  10. J.-I. Yamaki, H. Takatsuji, T. Kawamura, and M. Egashira, Solid State Ionics, 148, 241 (2002). https://doi.org/10.1016/S0167-2738(02)00060-7
  11. A. M. Andersson, D. P. Abraham, R. Haasch, S. MacLaren, J. Liu, and K. Amine, J. Electrochem. Soc., 149, A1358 (2002). https://doi.org/10.1149/1.1505636
  12. H. Park, T. Yoon, J. Mun, J. H. Ryu, J. J. Kim, and S. M. Oh, J. Electrochem. Soc., 160, A1539 (2013). https://doi.org/10.1149/2.095309jes
  13. J. Xu, I. -Y. Jeon, J. Ma, Y. Dou, S. -J. Kim, J. -M. Seo, H. Liu, S. Dou, J. -B. Baek, and L. Dai, Nano Res., 10, 1268 (2016).
  14. J.-H. Zhou, Z.-J. Sui, J. Zhu, P. Li, D. Chen, Y.-C. Dai, and W.-K. Yuan, Carbon, 45, 785 (2007), https://doi.org/10.1016/j.carbon.2006.11.019
  15. A. M. Puziy, O. I. Poddubnaya, R. P. Socha, J. Gurgul, and M. Wisniewski, Carbon, 46, 2113 (2008). https://doi.org/10.1016/j.carbon.2008.09.010
  16. C.-M. Park and H.-J. Sohn, Adv. Mater. 19, 2465 (2007). https://doi.org/10.1002/adma.200602592
  17. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, Phys. Chem. Chem. Phys., 9, 1276 (2007). https://doi.org/10.1039/b613962k
  18. Z. Yu, J. Song, M. L. Gordin, R. Yi, D. Tang, and D. Wang, Adv. Sci., 2, 1400020 (2015). https://doi.org/10.1002/advs.201400020
  19. M.-S. Park, J.-H. Kim, Y.-N. Jo, S.-H. Oh, H. Kim, and Y.-J. Kim, J. Mater. Chem., 21, 17960 (2011). https://doi.org/10.1039/c1jm13158c
  20. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Nano Lett., 9, 1752-1758 (2009). https://doi.org/10.1021/nl803279t
  21. H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, and G. Cui, J. Mater. Chem., 21, 5430 (2011). https://doi.org/10.1039/c1jm00049g
  22. H. Yang, H. Bang, K. Amine, and J. Prakash, J. Electrochem. Soc., 152, A73 (2005). https://doi.org/10.1149/1.1836126