• Title/Summary/Keyword: Lithiation

Search Result 51, Processing Time 0.027 seconds

The Effect of Low-Temperature Carbon Encapsulation on Si Nanoparticles for Lithium Rechargeable Batteries

  • Jung, Jaepyeong;Song, Kyeongse;Kang, Yong-Mook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2162-2166
    • /
    • 2013
  • The tailored surface modification of electrode materials is crucial to realize the wanted electronic and electrochemical properties. In this regard, a dexterous carbon encapsulation technique can be one of the most essential preparation methods for the electrode materials for lithium rechargeable batteries. For this purpose, DL-malic acid ($C_4H_6O_5$) was here used as the carbon source enabling an amorphous carbon layer to be formed on the surface of Si nanoparticles at enough low temperature to maintain their own physical or chemical properties. Various structural characterizations proved that the bulk structure of Si doesn't undergo any discernible change except for the evolution of C-C bond attributed to the formed carbon layer on the surface of Si. The improved electrochemical performance of the carbon-encapsulated Si compared to Si can be attributed to the enhanced electrical conductivity by the surface carbon layer as well as its role as a buffering agent to absorb the volume expansion of Si during lithiation and delithiation.

Lithium Transition Metal Phosphate Cathodes for Advanced Lithium Batteries (리튬이온전지에서 새로운 양극재료를 위한 금속인산화물)

  • ;Yet Ming Chiang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.26-26
    • /
    • 2003
  • Lithium storage electrodes for rechargeable batteries require mixed electronic-ionic conduction at the particle scale in order to deliver desired energy density and power density characteristics at the device level. Recently, lithium transition metal phosphates of olivine and Nasicon structure type have become of great interest as storage cathodes for rechargeable lithium batteries due to their high energy density, low raw materials cost, environmental friendliness, and safety. However, the transport properties of this family of compounds, and especially the electronic conductivity, have not generally been adequate for practical applications. Recent work in the model olivine LiFePO$_4$, showed that control of cation stoichiometry and aliovalent doping results in electronic conductivity exceeding 10$^{-2}$ S/cm, in contrast to ~10$^{-9}$ S/cm for high purity undoped LiFePO$_4$. The increase in conductivity combined with particle size refinement upon doping allows current rates of >6 A/g to be utilized while retaining a majority of the ion storage capacity. These properties are of much practical interest for high power applications such as hybrid electric vehicles. The defect mechanism controlling electronic conductivity, and understanding of the microscopic mechanism of lithiation and delithiation obtained from combined electrochemical and microanalytical techniques, will be discussed

  • PDF

Room Temperature Preparation of Electrolytic Silicon Thin Film as an Anode in Rechargeable Lithium Battery (실리콘 상온 전해 도금 박막 제조 및 전기화학적 특성 평가)

  • Kim, Eun-Ji;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • Silicon-based thin film was prepared at room temperature by an electrochemical deposition method and a feasibility study was conducted for its use as an anode material in a rechargeable lithium battery. The growth of the electrodeposits was mainly concentrated on the surface defects of the Cu substrate while that growth was trivial on the defect-free surface region. Intentional formation of random defects on the substrate by chemical etching led to uniform formation of deposits throughout the surface. The morphology of the electrodeposits reflected first the roughened surface of the substrate, but it became flattened as the deposition time increased, due primarily to the concentration of reduction current on the convex region of the deposits. The electrodeposits proved to be amorphous and to contain chlorine and carbon, together with silicon, indicating that the electrolyte is captured in the deposits during the fabrication process. The silicon in the deposits readily reacted with lithium, but thick deposits resulted in significant reaction overvoltage. The charge efficiency of oxidation (lithiation) to reduction (delithiation) was higher in the relatively thick deposit. This abnormal behavior needs to clarified in view of the thickness dependence of the internal residual stress and the relaxation tendency of the reaction-induced stress due to the porous structure of the deposits and the deposit components other than silicon.

Electrochemical Performance of Ti-Si Alloy Anode using Nodule Type Current Collector

  • Shin, Min-Seon;Park, Jung-Bae;Lee, Sung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.4
    • /
    • pp.61-66
    • /
    • 2017
  • The cycle performance of Ti-Si alloy anode material for Li-ion batteries has been investigated as a function of loading level of electrode using a nodule type of substrate, in which the current collector of flat foil is also used for comparison. The Ti-Si alloy powders are prepared by mechanical alloying method. The electrodes with the nodule type of current collector exhibit enhanced cycling performance compared to those using the flat foil because the alloy particles are more strongly adhered to substrate and the stress caused by lithiation and delithiation reaction can be effectively relaxed by nodule-type morphology. It appears, however, that the cycle performance is critically dependent on the loading level of electrode, even when the nodule type of current collector is applied. With high loading level, cracks are initiated at surface of electrode due to a steep stress gradient through the electrode thickness during cycling, leading to capacity fading.

Multi-scale Simulation Approach on Lithiation of Silicon Electrodes

  • Jeong, Hyeon;Ju, Jae-Yong;Jo, Jun-Hyeong;Lee, Gwang-Ryeol;Han, Sang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.186.2-186.2
    • /
    • 2014
  • 최근 친환경 에너지에 대한 관심이 증폭되면서 리튬이차전지에 대한 연구가 활발히 진행되고 있다. 특히 음극(anode) 물질의 경우 기존의 흑연(graphite)보다 이론적 용량이 약 10배 이상 높은 실리콘(Silicon)에 대한 관심이 매우 높다. 하지만 Si의 경우 리튬 충전거동 시 400% 이상의 부피팽창으로 몇 번의 충전/방전 싸이클(cycle)에 전극이 파괴되는 문제점을 지니고 있다. 이를 극복하기 위해 Si 나노선이 고려되고 있다. 우수한 전극특성을 갖는 Si 소재를 개발하기 위해서는 원자단위에서 Si 나노선의 리튬 충전 메커니즘을 살펴보는 것이 매우 중요하다. 하지만 기존의 시뮬레이션 기법으로는 Si 나노선의 볼륨팽창에 관한 메커니즘과 리튬 충전과정에서의 상변화(결정질에서 비정질) 과정을 설명하기는 기술적으로 매우 힘들다. 고전적인 분자동역학 방법의 경우 실제 나노스케일을 고려할 수 있지만, empirical potential로는 원자들간의 화학반응을 제대로 묘사할 수 없다. 한편 양자역학에 기반을 둔 제일원리방법의 경우 계산의 복잡성으로 현재의 컴퓨터 환경에서는 나노스케일에서 원자들의 동역학적인 거동을 연구하기 매우 힘들다. 우리는 이러한 문제를 해결하기 위해 실제 나노스케일에서 원자간 화학반응을 예측할 수 있는 Si-Li 시스템의 Reactive force field를 개발하였고, 분자동역학 계산방법을 이용하여 Si 나노선의 Li 충전 메커니즘을 규명하였다.

  • PDF

Fabrication of Carbon-coated Tin Nano-powders by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties (액중 전기선 폭발법을 이용한 비정질 탄소가 코팅된 주석 나노분말의 제조 및 전기화학적 특성)

  • Kim, Yoo-Young;Song, Ju-Suck;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.317-324
    • /
    • 2016
  • Tin is one of the most promising anode materials for next-generation lithium-ion batteries with a high energy density. However, the commercialization of tin-based anodes is still hindered due to the large volume change (over 260%) upon lithiation/delithiation cycling. To solve the problem, many efforts have been focused on enhancing structural stability of tin particles in electrodes. In this work, we synthesize tin nano-powders with an amorphous carbon layer on the surface and surroundings of the powder by electrical wire explosion in alcohol-based liquid media at room temperature. The morphology and microstructures of the powders are characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. The electrochemical properties of the powder for use as an anode material for lithium-ion battery are evaluated by cyclic voltammetry and a galvanometric discharge-charge method. It is shown that the carbon-coated tin nano-powders prepared in hexanol media exhibit a high initial charge specific capacity of 902 mAh/g and a high capacity retention of 89% after 50 cycles.

Regioselective Lithiation of $\alpha$-Methylpyridine Analogue and Its Trapping Reactions with $Me_2RSiCl(R = Me, tBuCH_2(Me_3Si)CH)$ ($\alpha$-Methylpyridine유도체의 국지 선택적 리튬화 반응과 $Me_2RSiCl(R = Me, tBuCH_2(Me_3Si)CH)$을 이용한 반응생성물의 확인반응)

  • Kim, Jeong Gyun;Park, Eun Mi;Son, Byeong Yeong
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.8
    • /
    • pp.570-575
    • /
    • 1994
  • The metallation of $\alpha$-methylpyridine 1(a∼f) with n-BuLi produced $\alpha-methylenylpyridinium$ salt 3(a∼f) by elimination of butane. The trapping reactions of 3(a∼f) with $Me_3SiCl\;and\;Me_2SiClCH(SiMe_3)CH_2tBu$ produced only 4(a∼f) and 5(a∼f). The $\alpha$-hydrogen atom of silylated methylene group in 4(a∼f) is more reactive than unreacted $CH_3$ of 4(a∼f) itself and 1(a∼f) toward n-BuLi at low temperature in pentane medium.

  • PDF

Functionalized Organometallic Ligand (1) Synthesis of Some Ferrocene Derivatives of Cyclohexyl- and Cyclopentadienyl-phosphines

  • Kim Tae-Jeong;Kim Yong-Hoon;Kim Hong-Seok;Shim Sang-Chul;Kwak Young-Woo;Cha Jin-Soon;Lee Hyung Soo;Uhm Jae-Kook;Byun Sang-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.588-592
    • /
    • 1992
  • A series of new ferrocene derivatives containing cyclohexylphosphines have been prepared from the reactions of lithioferrocenes with corresponding chlorodicyclohexylphosphines. 1-diphenylphosphino-1'-dicyclohexylphosphinoferro cene has been prepared from [1]-ferrocenophane via a ring cleavage reaction. Chiral ferrocenylaminophosphines incorporating cyclohexyl-and cyclopentadienylphosphines have also been prepared from the chiral template 2-N,N-dimethylaminoethylferrocene (FA) via stereoselective lithiation followed by phosphination with corresponding $R_2PCl$(R= $C_6H_{11}$, $C_5H_5$). The synthesis of cyclopentadienylphosphine derivative of (R)-FA (6b) led to the formation of a mixture of four diastereomers due to the presence of three chiral sources in the final product in addition to the fluxional behavior of the $η^1$-$C_5H_5$ group attached to the phosphorus. All these new compounds have been characterized by analytical and spectroscopic techniques.

Improved Performance of Lithium-Ion Batteries using a Multilayer Cathode of LiFePO4 and LiNi0.8Co0.1Mn0.1O2

  • Hyunchul Kang;Youngjin Kim;Taeho Yoon;Junyoung Mun
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.320-325
    • /
    • 2023
  • In Li-ion batteries, a thick electrode is advantageous for lowering the inactive current collector portion and obtaining a high energy density. One of the critical failure mechanisms of thick electrodes is inhomogeneous lithiation and delithiation owing to the axial location of the electrode. In this study, it was confirmed that the top layer of the composite electrode contributes more to the charging step owing to the high ionic transport from the electrolyte. A high-loading multilayered electrode containing LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) was developed to overcome the inhomogeneous electrochemical reactions in the electrode. The electrode laminated with LFP on the top and NCM811 on the bottom showed superior cyclability compared to the electrode having the reverse stacking order or thoroughly mixed. This improvement is attributed to the structural and interfacial stability of LFP on top of the thick electrode in an electrochemically harsh environment.

Synthesis of Crosslinked Poly(POEM-co-AMPSLi-co-GMA) Electrolytes and Physicochemical Properties (가교결합형 poly(POEM-co-AMPSLi-co-GMA) 전해질의 합성과 물리화학적 특성)

  • Choi, Da-In;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.65-70
    • /
    • 2014
  • In this study, crosslinked poly(POEM-co-AMPSLi-co-GMA)s were prepared by epoxy coupling of GMA after radical copolymerization of AMPS, POEM and GMA followed by acid-base titration reaction between sulfonic acid of AMPS and $Li_2CO_3$. It was observed that the crystalline melting temperature of POEM was effected by mol% of components and shifted to lower value by lithiation of AMPS group. The ionic conductivity of crosslinked polymer electrolyte was decreased by addition of GMA but maintained over $1.0{\times}10^{-6}S\;cm^{-1}$ until 16 mol%. Particularly, the self-doped polymer electrolyte with 2 mol% of GMA showed its ionic conductivity as high as $4.08{\times}10^{-6}S\;cm^{-1}$ at room temperature and electrochemical stability up to 6 V. In addition, 0.11 MPa of modulus and 270% of elongation were obtained from the free standing film of crosslinked polymer electrolyte.