• Title/Summary/Keyword: Liquified Petroleum Gas

Search Result 28, Processing Time 0.025 seconds

Compressed Natural Gas Bus & Liquefied Petroleum Gas Vehicle (압축천연가스(CNG)버스와 액화석유가스(LPG)자동차)

  • 윤재건
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.3
    • /
    • pp.28-32
    • /
    • 2001
  • Using the CNG(compressed natural gas) and LPG(liquified petroleum gas) as the automotive fuel will be expanded because of their clean effect to the environmental air qualify. But these programs of gas using expansion would have a difficulty due to public consideration of gas utilities as a big hazard. The Ministry of Environment has an ambitious plan to substitute more than 25,000 buses with CNG and ensure more than 200 CNG refueling stations as well by the year of 2007. However, it is very difficult to establish new CNG and LPG refueling stations because of expanded safety distance than ever before by several major explosion accidents.

  • PDF

A Study on the Comparison of Fuel Combustion Characteristics between Gasoline and Liquified Petroleum Gas on SI Engine (SI 엔진에서의 가솔린과 액화석유가스 연료의 연소특성 비교 연구)

  • Park, S.C.;Ko, Y.N.;Kwon, Y.W.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.12-17
    • /
    • 2008
  • The purpose of this study is to analyse and compare the fuel combustion characteristics between LPG and gasoline on SI engine. Pressures of combustion chamber were measured on the state that engine speed was 2000rpm and BMEP was 2.0bar And we measured pressures of combustion chamber regarding variation of the MBT We could know that the combustion pressure of LPG fuel use engine is appeared lower than that of gasoline fuel use engine. At the lean mixture ratio area we could blow that Ignition timings are pulled very forward, and ignition timing of LPG fuel is advanced to $5\sim12^{\circ}$ CA than gasoline fuel. We learned that the value of coefficient of variation of LPG fuel is higher than gasoline fuel.

  • PDF

A Study on Liquified Petroleum Gas(LPG) Fuel Quantitative Method using Coriolis Mass Flowmeter (코리올리 질량유량계를 이용한 액화석유가스(LPG) 정량 측정 방법 연구)

  • Park, Tae-Seong;Seong, Sang-Rae;Yim, Eui-Soon;Lee, Joung-Min;Lee, Myung-Sig;Kang, Hyung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.109-122
    • /
    • 2018
  • Domestic LPG meters are being tested for LPG quantification in accordance with the "Measures Act". The LPG meter is re-tested every three years in accordance with the "Enforcement Decree of the Measures Act". The maximum permissible error within the test is within ${\pm}1.0%$, and the tolerance is within ${\pm}1.5%$. For the quantitative measurement of LPG, a hydrometer for LPG, a balance, and a pressure vessel are used. The volume of LPG varies in depending on the temperature and pressure. The current quantitative measurement method of LPG requires the measurement of temperature, pressure and density in order to determine the volume of LPG, respectively, and some equipments are needed accordingly. Coriolis mass flowmeter, on the other hand, measure the mass flow, density and temperature at the same time, and can be converted and calculated to the required values using a computer program, also it is widely applied in the industrial field. In this study, the volume of LPG was measured using a Coriolis mass flowmeter as a basic study of LPG quantitative measurement. In addition, it is shown that it is possible to apply for the LPG quantitative measurement using the Coriolis mass flowmeter by comparing it with the conventional LPG quantitative measurement method.

사고사례 분석을 통한 LPG자동차 충전소의 위험요인 도출

  • 김대수;김홍영;윤재건
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.05a
    • /
    • pp.139-144
    • /
    • 1997
  • 지난 30년간의 LPG(Liquified Petroleum Gas)자동차의 사용으로 현재 전국에는 500여 곳의 LPG자동차 충전소가 운영되고 있다. LPG자동차의 운행대수에 비하면 충전소의 수가 절대적으로 부족하고, 또한 LPG자동차의 보급확대를 위해서는 충전소 확충이 필수적이다. 그러나 최근의 아현동 도시가스 밸브기지 폭발사고나 대구 지하철 공사장 도시가스 폭발사고와 같은 대형 가스 폭발사고의 여파로 충전소 설치 부지의 확보에 큰 어려움을 겪고 있다. 특히, 대도시 지역 내에서의 충전소 설치는 인근 지역주민의 강력한 반대로 거의 불가능한 실정이다. (중략)

  • PDF

A Study on Reduction of Exhaust Gas Temperature in Retrofitted LPG Fueled Engine Based Medium-Duty Diesel Engine (중형 디젤을 기초한 LPG엔진에서 배기가스온도 저감 연구)

  • 최경호;조웅래
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.63-68
    • /
    • 2003
  • The purpose of this study was to investigate reduction of exhaust gas temperature in LPG conversion engine from diesel. A conventional diesel engine was modified to a LPG(Liquified Petroleum Gas) engine that diesel fuel injection pump was replaced by the LPG fuel system. The research was peformed with measurement of exhaust gas temperature by varying spark ignition timing, air-fuel ratio, compression ratio, EGR ratio and different compositions of butane and propane. The major conclusion of this work were followed. (i) Exhaust gas temperature was decreased and power was increased with the advanced spark ignition timing. (ii) Exhaust gas temperature was decreased with lean and rich air-fuel ratio. (iii)Exhaust gas temperature was decreased and power was increased with the higher compression ratio. (iv) Engine power and exhaust temperature were not influenced by varied butane/propane fuel compositions. (v) Finally, one of the important parameters in reduction of exhaust gas temperature is spark ignition timing among the parameters in this study.

A Study on the Explosion Relief Venting in the Gas Explosion (실내 가스 폭발시 폭발압력 방출에 관한 연구)

  • Oh, Kyu-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.71-77
    • /
    • 2005
  • This study aims to find the safe vent area to prevent a destruction of building by gas explosion in a building. Explosion vessel which used in this experiment is 1/5 scale down model of simple livingroom and its dimension is 100cm in length 60cm in width and 45cm in height. Liquified petroleum gas(LPG) was injected to the vessel to the concentration of 4.5vol%, and injection rate were varied in 1L/min or 4L/min. Gas mixture was ignited by the 10kV electric spark. For analysis the characteristics of vented explosion pressure according to the vent size and vent shape, its size and shape were varied. From the experiment, it was found that explosion pressure in the vented explosion :in affected by the gas injection rate, vent area and vent shape. And the vent area to volume ratio(S/V) to prevent the building destruction by explosion pressure, it is recommended that the design of vent area happened by the explosion should be above 1/500cm in S/V. And if the vent area has complicate structure in same area, vented explosion pressure will be higher than a single vent, and possibility of building destruction will increase. Therefore to effectively vent the explosion pressure for protect a building and residents from the gas explosion hazards, the same vent area should have a singular and constant shape in the cross-sectional area of the vessel.

Effects of Operation Conditions on Hydrocarbon Components Emitted from SI Engine with Gaseous Fuels (기체 연료를 사용한 전기점화기관에서 운전조건이 HC 배출물 성분에 미치는 영향)

  • 박종범;최희명;이형승;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.108-121
    • /
    • 1998
  • Using gas chromatography, the light hydrocarbon emissions were analyzed from SI engine fueled with methane and liquified petroleum gas(LPG), and the effects of fuel and engine operating condition were discussed. For this purpose, 14 species of light hydrocarbon including 1, 3-butadiene were separated, calibrated with standard gas, and measured from undiluted emissions. The brake specific hydrocarbon emission(BSHC) and ozone forming potential(BSO)3 were calculated and discussed with the changes of fuel, engine speed, load, fuel/air equivalence ratio, coolant temperature, and spark timing. As a result, exhaust emission was composed of mainly fuel composed of mainly fuel comp- onent and other olefin components of similar carbon number. The olefin components such as ethylene and propylene determine most of the ozone forming potential. The fraction of fuel component in total hydrocarbon emission was bigger with methane fuel than with LPG fuel. Also fuel fraction increased at high speed or high speed or high temperature of exhaust gas, and to lesser extent with high coolant temperature and retarded spark. However, the effect of equivalence ratio had different tendency according to fuels.

  • PDF

Analysis of Gas Hydrocarbons by Gas-Liquid Partition Chromatography (Gas Chromatography 에 依한 까스炭化水素의 分析)

  • Chwa-Kyung Sung;Icksam Noh;Jung Yup Kim
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.128-132
    • /
    • 1963
  • A study has been made on the applicability of gas-liquid partition chromatography to the qualitative and quantitative analysis of complex mixture of gaseous hydrocarbons. While phthalate columns are widely used for this $purpose^9$, they separates neither saturated hydrocarbons from the unsaturated nor n-butane from isobutene or butene-1, therefore combined columns such as phthalate and dimethylsulfolane have been used for the perfect separation of gaseous hydrocarbons. It is shown by this study, however, that hydrocarbons having $C_1$ through $C_4$ can be separated with a 2-meters tetraethyleneglycol dimethylether column except ethane from ethylene, and trans-from cis-2-butene especially operated at $15^{\circ}C$$ using helium as the carrier gas. The column effluents were in order of methane, (ethane, ethylene), propane, propylene, isobutane, n-butane, isobutylene, butene-1, (trans-& cis-2-butene, isopentane), (butadiene-1, 3, n-pentane). Two kinds of liquified petroleum gases in market are analysed qualitatively and quantitatively. The results indicate that use of this 2-meters TEGDE column permits the separation and identification of all the commonly encountered aliphatic gaseous hydrocarbons.

  • PDF

Study for Failure Cases on Engine Electronic Control Computer in Liquid Petroleum Gas vehicle (액화석유가스 자동차 엔진의 전자제어 컴퓨터의 고장사례 연구)

  • Lee, Il-Kwon;Kim, Young-Gyu;Kook, Chang-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.6
    • /
    • pp.28-33
    • /
    • 2011
  • The purpose of this paper analyzes and studies to improve the failure cases on the computer that one of electronic control elements for engine in liquified petroleum gas vehicle. The first case, it certified the non-starting phenomenon of engine that it's electronic control unit didn't control the fuel for idle speed actuator because of no given action signal in slow-cut solenoid valve. The second case, it knew the bad condition phenomenon of engine and back-fire by the wire melting of ignition coil and firing of transistor being inside ECU. The third case, it certified the action stoping phenomenon of engine and malfunctioning signal for engine ECU because of leakage of current and an excess current by moisture inflowing inside ECU curcuit plate. Therefore, it is thought that will elevate the durability and reliability of engine computer throughout procure of quality.