• Title/Summary/Keyword: Liquid-phase exfoliation

Search Result 9, Processing Time 0.018 seconds

Solution-Processed Two-Dimensional Materials for Scalable Production of Photodetector Arrays

  • Rhee, Dongjoon;Kim, Jihyun;Kang, Joohoon
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.228-237
    • /
    • 2022
  • Two-dimensional (2D) nanomaterials have demonstrated the potential to replace silicon and compound semiconductors that are conventionally used in photodetectors. These materials are ultrathin and have superior electrical and optoelectronic properties as well as mechanical flexibility. Consequently, they are particularly advantageous for fabricating high-performance photodetectors that can be used for wearable device applications and Internet of Things technology. Although prototype photodetectors based on single microflakes of 2D materials have demonstrated excellent photoresponsivity across the entire optical spectrum, their practical applications are limited due to the difficulties in scaling up the synthesis process while maintaining the optoelectronic performance. In this review, we discuss facile methods to mass-produce 2D material-based photodetectors based on the exfoliation of van der Waals crystals into nanosheet dispersions. We first introduce the liquid-phase exfoliation process, which has been widely investigated for the scalable fabrication of photodetectors. Solution processing techniques to assemble 2D nanosheets into thin films and the optoelectronic performance of the fabricated devices are also presented. We conclude by discussing the limitations associated with liquid-phase exfoliation and the recent advances made due to the development of the electrochemical exfoliation process with molecular intercalants.

Properties, Preparation, and Energy Storage Applications of Two-dimensional Molybdenum Disulfide (2차원 이황화몰리브덴의 성질, 제조 및 에너지 저장 소자 응용)

  • Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.133-140
    • /
    • 2019
  • Two-dimensional (2D) ultrathin molybdenum dichalcogenides $MoS_2$ has gained a great deal of attention in energy conversion and storage applications because of its unique morphology and property. The 2D $MoS_2$ nanosheets provide a high specific surface area, 2D charge channel, sub-nanometer thickness, and high conductivity, which lead to high electrochemical performances for energy storage devices. In this paper, an overview of properties and synthetic methods of $MoS_2$ nanosheets for applications of supercapacitors and rechargeable batteries is introduced. Different phases triangle prismatic 2H and metallic octahedral 1T structured $MoS_2$ were characterized using various analytical techniques. Preparation methods were focused on top-down and bottom-up approaches, including mechanical exfoliation, chemical intercalation and exfoliation, liquid phase exfoliation by the direct sonication, electrochemical intercalation exfoliation, microwave-assisted exfoliation, mechanical ball-milling, and hydrothermal synthesis. In addition, recent applications of supercapacitors and rechargeable batteries using $MoS_2$ electrode materials are discussed.

Fabrication of Printed Graphene Pattern Via Exfoliation and Ink Formulation of Natural Graphite (천연흑연 박리를 통한 그래핀 잉크 생산 및 프린팅)

  • Gyuri, Kim;Yeongwon, Kwak;Ho Young, Jun;Chang-Ho, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.293-300
    • /
    • 2022
  • The remarkable mechanical, electrical, and thermal properties of graphene have recently sparked tremendous interest in various research fields. One of the most promising methods to produce large quantities of graphene dispersion is liquid-phase exfoliation (LPE) which utilizes ultrasonic waves or shear stresses to exfoliate bulk graphite into graphene flakes that are a few layers thick. Graphene dispersion produced via LPE can be transformed into graphene ink to further boost graphene's applications, but producing high-quality graphene more economically remains a challenge. To overcome this shortcoming, an advanced LPE process should be developed that uses relatively cheap natural graphite as a graphene source. In this study, a flow-LPE process was used to exfoliate natural graphite to produce graphene that was three times cheaper and seven times larger than synthetic graphite. The optimal exfoliation conditions in the flow-LPE process were determined in order to produce high-quality graphene flakes. In addition, the structural and electrical properties of the flakes were characterized. The electrical properties of the exfoliated graphene were investigated by carrying out an ink formulation process to prepare graphene ink suitable for inkjet printing, and fabricating a printed graphene pattern. By utilizing natural graphite, this study offers a potential protocol for graphene production, ink formulation, and printed graphene devices in a more industrial-comparable manner.

Combination of ultrasonic assisted liquid phase exfoliation process and oxidation-deoxidation method to prepare large-sized graphene

  • Qi, Lei;Guo, Ruibin;Mo, Zunli;Wu, Qijun
    • Carbon letters
    • /
    • v.25
    • /
    • pp.50-54
    • /
    • 2018
  • Large-size graphene samples are successfully prepared by combining ultrosonic assisted liquid phase exfoliation process with oxidation-deoxidation method. Different from previous works, we used an ultrasound-treated expanded graphite as the raw material and prepared the graphene via a facile oxidation-reduction reaction. Results of X-ray diffraction and Raman spectroscopy confirm the crystal structure of the as-prepared graphene. Scanning electron microscopy images show that this kind of graphene has a large size (with a diameter over $100{\mu}m$), larger than the graphene from graphite powder and flake graphite prepared through single oxidation-deoxidation method. Transmission electron microscopy results also reveal the thin layers of the prepared graphene (number of layers ${\leq}3$). Furthermore, the importance of preprocessing the raw materials is also proven. Therefore, this method is an attractive way for preparing graphene with large size.

Transparent Black Phosphorus Nanosheet Film for Photoelectrochemical Water Oxidation

  • Choi, Chang-Ho
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.217-222
    • /
    • 2021
  • Although monolayer black phosphorus (BP) and few-layer BP nanosheets (NSs) have been extensively studied as promising alternatives to graphene, research has focused primarily on atomically thin-layered BP in an isolated form. In order to realize the practical applications of BP-related devices, a BP film based on continuous networking of few-layer BP NSs should be developed. In this study, a transparent BP film with high quality was fabricated via a vacuum filtration method. An oxygen-free water solvent was used as an exfoliation medium to avoid significant oxidation of the few-layer BP NSs in liquid-phase exfoliation. The exfoliation efficiency from bulk BP to the few-layer BP NSs was estimated at 22%, which is highly efficient for the production of continuous BP film. The characteristics of the high-quality BP film were determined as 98% transparency, minimum oxidation of 18%, structural stability, and an appropriate bandgap of about 1.8 eV as a semiconductor layer. In order to demonstrate the potential of the BP film for photocatalytic activity, we performed photoelectrochemical water oxidation of the transparent BP film. Although its performance should be improved for practical applications, the BP film could function as a photoanode, which offers a new potential semiconductor in water oxidation. We believe that if the BP film is adequately engineered with other catalysts the photocatalytic activity of the BP film will be improved.

Solution-based Synthesis of Two-dimensional Materials for Electrochemical Capacitors (전기화학 커패시터 응용을 위한 용액기반의 2차원 소재 제조)

  • Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.272-278
    • /
    • 2017
  • Two-dimensional (2D) materials, especially graphene and $MoS_2$ sheets, have gained much attention and shown great promise for the application in supercapacitors. To widely use the 2D materials for supercapacitors, highly efficient, low cost, and environmentally friendly synthetic methods for the preparation of 2D materials should be developed. Here, we will review recently developed solution-based processes for preparing 2D materials for supercapacitors. Chemical exfoliation-reduction, chemical intercalation, and liquid phase exfoliation methods will be introduced. Moreover, the electrochemical characteristics of graphene and $MoS_2$-based electrodes for supercapacitors are summarized. In addition to solution-based processes, other challenges and opportunities are discussed in terms of controlling nanosheet compositions, sizes, and thicknesses.

Synthesis of Cobalt Hydroxide Nanosheets based on Sonication-induced Exfoliation for Depolymerization of Polyethylene Terephthalate (폴리에틸렌 테레프탈레이트의 해중합을 위한 초음파 박리법 기반의 코발트 수산화물 나노시트의 제조)

  • Jin, Se Bin;Son, Seon Gyu;Jeong, Jae-Min;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.668-673
    • /
    • 2020
  • In this work, ultrathin and two-dimensional (2D) cobalt hydroxide [Co(OH)2] nanosheets were synthesized by a sonication assisted liquid-phase exfoliation of bulk Co(OH)2. The resulting exfoliated Co(OH)2 is a hexagonal mono-layered nanosheet with a high specific surface area of 27.5 ㎡ g-1. The depolymerization of polyethylene terephthalate (PET) based on glycolysis reaction was also performed using an exfoliated Co(OH)2 catalyst. Excellent catalytic reaction performances were demonstrated; a high PET conversion and bis(2-hydroxyethyl) terephthalate (BHET) yield of both 100% using the nanosheet catalyst were achieved within a reaction time and temperature of 30 min and 200 ℃, respectively. The long-term stability of exfoliated Co(OH)2 catalysts was also demonstrated by recyclability tests of the catalyzed glycolysis reaction of PET over four cycles, showing both 100% of high PET conversion and BHET yield.

PEDOT:PSS Enhanced Electrochemical Capacitive Performance of Graphene-Templated δ-MnO2

  • Sinan, Neriman;Unur, Ece
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.50-59
    • /
    • 2020
  • Birnessite-type manganese dioxide (δ-MnO2) with hierarchical micro-/mesoporosity was synthesized via sacrificial graphene template approach under mild hydrothermal conditions for the first time. Graphene template was obtained by a surfactant (cetyltrimethylammonium bromide, CTAB) assisted liquid phase exfoliation (LPE) in water. A thin PEDOT:PSS (poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate)) layer was applied to improve electrical conductivity and rate capability of MnO2. The MnO2 (535 F g-1 at 1 A g-1 and 45 F g-1 at 10 A g-1) and MnO2/PEDOT:PSS nanocomposite (550 F g-1 at 1 A g-1 and 141 F g-1 at 10 A g-1) delivered electrochemical performances superior to their previously reported counterparts. An asymmetric supercapacitor, composed of MnO2/PEDOT:PSS (positive) and Fe3O4/Carbon (negative) electrodes, provided a maximum specific energy of 18 Wh kg-1 and a maximum specific power of 4.5 kW kg-1 (ΔV= 2 V, 1M Na2SO4) with 85% capacitance retention after 1000 cycles. The graphene-templated MnO2/PEDOT:PSS nanocomposite obtained by a simple and green approach promises for future energy storage applications with its remarkable capacitance, rate performance and cycling stability

Characteristics of Graphene Production from Graphite using Plant Extracts (식물추출액을 이용한 흑연으로부터 그래핀 생산 특성)

  • Jeong, Yongjae;Ryu, Hojun;Choi, Chorong;An, Sanghyeon;Kim, Woojung;Kim, Dongho;Choi, Byeongseo;Salunke, Bipinchandra K.;Kim, Beom Soo
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.208-213
    • /
    • 2016
  • Recently, numerous studies have utilized graphene in biomedical applications such as drug delivery, cancer therapy, and bioimaging. In this study, graphene was eco-friendly prepared by liquid phase exfoliation of graphite using plant extracts in water. Initially, 12 different plants or plant parts were screened for the characteristic graphene peak at near 268 nm using UV-Vis spectrophotometric analyses. The ability to form stable black graphene dispersion was highest using Xanthium strumarium extract. Transmission electron microscopy images showed that about 5 layer-graphene was produced from 1 g/L of graphite, while more than 5 layers were formed from 2 g/L of graphite. The optimum X. strumarium concentration for graphene production was 2 g/100 mL.