• Title/Summary/Keyword: Liquid-Liquid Heat Exchanger

Search Result 158, Processing Time 0.027 seconds

An Experimental Study on the Frost Prevention using Micro Liquid Film of an Antifreeze Solution

  • Chang Young-Soo;Yun Won-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.66-75
    • /
    • 2006
  • The effect of antifreeze solution liquid film on the frost prevention is experimentally investigated. It is desirable that the antifreeze solution spreads widely on the heat exchanger surface forming thin liquid film to prevent frost nucleation while having small thermal resistance across the film. A porous layer coating technique is adopted to improve the wettability of the antifreeze solution on a parallel plate heat exchanger. The antifreeze solution spreads widely on the heat exchanger surface with $100{\mu}m$ thickness by the capillary force resulted from the porous structure. It is observed that the antifreeze solution liquid film prevents a parallel plate heat exchanger from frosting. The reductions of heat and mass transfer rate caused by the thin liquid film are only $1{\sim}2%$ compared with those for non-liquid film surface.

Experimental Study on Liquid Desiccant Distribution Characteristics at a Dehumidifier with Extended Surface (확장표면을 적용한 액체식 제습기에서 제습액 분배 특성에 관한 실험적 연구)

  • Lee, Min-Su;Chang, Young-Soo;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.645-649
    • /
    • 2009
  • Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.

  • PDF

An Analysis of Heat Transfer and Pressure Drop Characteristics for Optimum Design of Cryogenic Heat Exchanger used for Liquid Nitrogen Cooling (액체질소 냉각용 극저온 열교환기의 최적설계를 위한 열전달 및 압력강하 특성 분석)

  • Ko, Ji Woon;Jeon, Doong Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.1
    • /
    • pp.24-32
    • /
    • 2018
  • In this paper, analytical studies were conducted to obtain optimal design factors and analysis parameters of liquid nitrogen cooling exchanger applied in cryogenic refrigerator. The target value of heat transfer rate was more than 1 kW and pressure drop was less than 40 kPa. Design factors of cryogenic heat exchanger included width of channel and configuration of paths. Analytical factors of liquid nitrogen cooling exchanger included temperatures of coolant header surface and inlet liquid nitrogen. The width and number of channels in the design parameters were 0.0050~0.0150 m and 4~8, respectively. The configuration of channel path was 4 ways. Temperatures of coolant header surface and inlet liquid nitrogen in analytical parameters were 74 to 78K and 82 to 86K, respectively. As result, the design factor and analysis parameter satisfying the target values were obtained. The biggest heat transfer rate was 1.36 kW with pressure drop of 32.26 kPa.

An Experimental Study on the Frost Prevention using Micro Liquid Film of an Antifreezing Solution (마이크로 부동액막을 이용한 착상방지에 관한 실험적 연구)

  • Chang Young- Soo;Yun Won -Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.459-467
    • /
    • 2005
  • The effect of anti freezing solution liquid film on the frost prevention is experimentally investigated. It is desirable that the antifreezing solution spreads widely on the heat exchanger surface forming thin liquid film to prevent frost nucleation and reduce the thermal resistance across the film. A porous layer coating technique is adopted to improve the wettedness of the anti freezing solution on a parallel plate heat exchanger. The antifreezing solution spreads widely on the heat exchanger surface with 100 $\mu$m thickness by the capillary force resulting from the porous structure. It is observed that the antifreezing solution liquid film prevents a parallel plate heat exchanger from frosting. The reductions of heat and mass transfer rate caused by thin liquid film are only $1\~2\%$ compared with those for non-liquid film surface.

Performance Comparison of Liquid-Cooling with Air-Cooling Heat Exchangers Designed for Telecommunication Equipment

  • Jeon, Jong-Ug;Choi, Jong-Min;Heo, Jae-Hyeok;Kang, Hoon;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.64-69
    • /
    • 2008
  • Electronic and telecommunication industries are constantly striving towards miniaturization of electronic devices. Miniaturization of chips creates extra space on PCBs that can be populated with additional components, which decreases the heat transfer surface area and generates very high heat flux. Even though an air-cooling technology for telecommunication equipment has been developed in accordance with rapid growth in electrical industry, it is confronted with the limitation of cooling capacity due to the rapid increase of heat density. In this study, liquid-cooling heat exchangers were designed and tested by varying geometry and operating conditions. In addition, air-cooling heat exchangers were tested to provide performance data for the comparison with the liquid-cooling heat exchangers. The liquid-cooling heat exchangers had twelve rectangular channels with different flow paths of 1, 2, and 12. Silicon rubber heaters were used to control the heat load to the heat exchangers. Heat input ranged from 293 to 800W, and inlet temperatures of working fluid varied from 15 to $27^{\circ}C$. The heat transfer coefficients were strongly affected by flow conditions. All liquid-cooling heat exchangers showed higher cooling performance than the air-cooling heat exchanger. The heat exchanger with 2-paths could provide more controllability on the maximum temperature than the others.

Frost Prevention of Fin-Tube Heat Exchanger by Spreading Antifreezing Solution (부동액 도포에 의한 핀-튜브 열교환기 착상방지)

  • Oh, Sang-Youp;Chang, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.477-485
    • /
    • 2006
  • A study on frost prevention of fin-tube heat exchanger is experimently performed by spreading antifreezing solution on heat exchanger surface. It is desirable that the antifreezing solution spreads completely on the surface forming thin liquid film to prevent frost nucleation and crystal growth and to reduce the thermal resistance across the liquid film. A small amount of antifreezing solution falls in drops on heat exchanger surface using two types of supplying devices, and a porous layer coating technique is adopted to enhance the wettedness of antifreezing solution on the surface. It is observed that the antifreezing solution liquid film prevents fin-tube heat exchanger from frosting, and heat transfer performance does not degrade through the frosting tests. The concentration of supplied antifreezing solution can be determined by heat transfer analysis of the first row of heat exchanger to avoid antifreezing solution freezing due to dilution by moisture absorption.

An Experimental Study on the Thermal Characteristics of Direct Contact Liquid-Ice Heat Exchanger (직접접촉식 액-빙 열교환기의 전열특성에 관한 실험적 연구)

  • Lee, Chae-Moon;Park, Jung-Won;Kim, Dong-Hun
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.65-77
    • /
    • 1996
  • The operating thermal chracteristics of direct contact liquid-ice heat exchanger was experimentally investigated. In this paper, The effects of Ice Packing Factor(IPF), the inlet temperature and the flow rate of Heat Transfer Fluid(HTF) were stuided in the liquid-ice heat exchanger. Thermal stratification in liquid-ice heat exchanger was established clearly and faster at the higher inlet temperature and flow rate of HTF. At the end of melting of the lower flow rate is cleared the thermal stratification in liquid-ice heat exchanger. The temperature stratification is long with higher value of IPF of liquid-ice heat exchanger. The mean temperature of liquid-ice storage was changed rapidly with increasing flow rate and inlet temperature of HTF. The gradiant of ratio of total energy to latent energy was found higher with increasing inlet temperature and flow rate.

  • PDF

Characteristics of Liquid-Liquid Direct Contact Heat Exchanger for a Solar System (태양열 이용을 위한 직접접촉식 액-액 열교환기 특성)

  • 강인석;김종보;강용혁;곽희열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3276-3286
    • /
    • 1994
  • In most direct contact liquid-liquid heat exchangers, oil or hydrocarbon with a density less than water is normally used as dispersed working fluid. The main difficulty that arises with this arrangement lies in the control of the interface at the top of the column. When it is connected with a solar collector which uses water as its working fluid, the main difficulties arise from the fact that the water can be frozen during winter time. In order to solve these problems and to demonstrate the technical feasibility of a direct contact liquid-liquid heat exchanger, liquids heavier than water with low freezing temperature has been utilized as dispersed phase liquids in a small laboratory scale model made of pyrex glass. In the present investigation, dimethyl phthalate(C/sub 6/H/sub 4/)COOCH/sub 3/)/sub 2/) and diethyl phthalate (C/sub 6/H/sub 4/(CO/sub 2/C/sub 2/H/sub 5/)/sub 2/) are utilized as heavy dispersed phase working fluids. The results of the present investigation the technical in the utilization of heavier dispersed working liquid in the spray-column liquid-liquid heat exchanger for a solar system. The overall average temperature difference along the column is found to be almost half of the initial temperature difference between the dispersed and the continuous phase. Despite the fact that the two phthalates tested in the experiment differ significantly in some of their physical properties, the volumetric heat transfer coefficients in terms of dispersed fluid superficial velocities were found to be similar for both phthalates tested.

Numerical Study of Liquid Film Flow on Heat Exchanger Tube Arrangement and Configuration of Multi Effect Distillation (증발식 다중효용 담수기에서 열교환기 튜브 배열 및 형상에 따른 액막 유동에 관한 수치해석)

  • Jung, Il-Young;Yun, Sang-Kook;Joo, Hong-Jin;Kwak, Hee-Youl
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.68-73
    • /
    • 2011
  • This study was performed numerical analysis in order to analyze liquid film flow of heat exchanger tube arrangement and configuration of evaporative multi effect distillation system using medium-temperature. Simulation was accomplished the two-dimensional calculations using commercial analyses program FLUENT based on the FVM(finite volume method). Fresh water generator of this study used Shell & Tubes heat exchanger with Cu_Ni tube, configuration of tube used bare tube and corrugated tube, and arrangement of tube used in-line array and staggered array. Performance of heat exchanger through the formation of liquid film was compared and analyzed. Liquid film flow occurred that falling on heat exchanger tube wall. Result of simulation showed that liquid film thickness of in-line arrangement was found 0.57mm with bare tube and 0.67mm with corrugated tube, respectively. And liquid film thickness of staggered arrangement was found 0.39mm with bare tubes and 0.62mm with corrugated tubes, respectively. Liquid film thickness of corrugated tube showed thicker than bare tube, but heat transfer rates of corrugated tube showed higher than bare tube. The reason was considered that surface area of corrugated tube was wider than bare tube. And liquid film thickness of staggered arrangement showed thinner than in-line arrangement, so thermal performance of staggered arrangement showed higher than in-line arrangement.

  • PDF

Performance Characteristics of Refrigerant R170(Ethane) Refrigeration System Using Liquid-gas Heat Exchanger (액-가스 열교환기를 이용한 R170(에탄)용 냉동시스템의 성능 특성)

  • Ku, Hak-Keun
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.78-85
    • /
    • 2016
  • This paper considers the influence of internal heat exchangers to the efficiency of a refrigerating system using R170. These liquid-gas heat exchangers(internal or suction-line heat exchangers) can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analysis the performance characteristics of refrigeration system with internal heat exchanger. The influence of operating conditions, such as the mass flowrate of R170, inner diameter tube and length of internal heat exchanger, to optimal dimensions of the heat exchanger is also analyzed in the paper. The main results were summarized as follows : the mass flowrate of R170, inner diameter tube and length of internal heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative Capacity Index) of this system. Exception for the effect of inner diameter, the RCI of R170 with respect to refrigerant mass flowrate, the length and effectiveness of internal heat exchanger is about 2.1~3.3% higher than that of R13 at the same experimental conditions. With a thorough grasp of these effect, it is necessary to design the R170 compression refrigeration cycle using internal heat exchanger.