• Title/Summary/Keyword: Liquid water

Search Result 3,697, Processing Time 0.029 seconds

Selecting Characteristic Raman Wavelengths to Distinguish Liquid Water, Water Vapor, and Ice Water

  • Park, Sun-Ho;Kim, Yong-Gi;Kim, Duk-Hyeon;Cheong, Hai-Du;Choi, Won-Seok;Lee, Ji-In
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.209-214
    • /
    • 2010
  • The Raman shift of water vapor is 3657 $cm^{-1}$, and this Raman signal can be easily separated from other Raman signals or elastic signals. However, it is difficult to make simultaneous Raman measurements on the three phases of water, namely, ice water, liquid water, and water vapor. This is because we must consider the overlap between their Raman spectra. Therefore, very few groups have attempted to make Raman simultaneous measurements even on two elements (water vapor and liquid water, or water vapor and ice water). We have made an effort to find three characteristic Raman wavelengths that correspond to the three phases of water after measuring full Raman spectra of water on particular days that are rainy, snowy or clear. Finally, we have found that the 401-nm, 404-nm, and 408-nm wavelengths are the most characteristic Raman wavelengths that are representative of the water phases when we are using the 355-nm laser wavelength for making measurements.

A Proposal of Flow Limit for Soils at Zero Undrained Shear Strength (흙의 비배수전단강도가 0이 되는 함수비인 흐름한계의 제안)

  • Park, Sung-Sik;Nong, Zhenzhen
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.73-84
    • /
    • 2013
  • When a slope failure or a debris flow occurs, a shear strength on failure plane becomes nearly zero and soil begins to flow like a non-cohesive liquid. A consistency of cohesive soils changes as a water content increases. Even a cohesive soil existing at liquid limit state has a small amount of shear strength. In this study, a water content, at which a shear strength of cohesive soils is zero and then cohesive soils will start to flow, was proposed. Three types of clays (kaolinite, bentonite and kaolinite (50%)+bentonite (50%)) were mixed with three different solutions (distilled water, sea water and microbial solution) at liquid limit state and then their water contents were increased step by step. Then, their undrained shear strength was measured using a portable vane shear device called Torvane. The ranges of undrained shear strength at liquid and plastic limits are 3.6-9.2 kPa and 24-45 kPa, respectively. On the other hand, the water content that corresponds to the value of the undrained shear strength changing most rapidly is called flow water content. The flow limit refers to the water content when undrained shear strength of cohesive soils is zero. In order to investigate the relationship between liquid limit and flow limit, the cohesive index was defined as a value of the difference between flow limit and liquid limit. The new plasticity index was defined as the value of difference between flow limit and plastic limit. The new liquidity index was also defined using flow limit. The values of flow limit are 1.5-2 times higher than those of liquid limit. At the same time, the values of new plasticity index are 2-5.5 times higher than those of original plasticity index.

Research on Step-Type Chemical Liquid Deodorizer using Liquid Catalyst

  • WOO, Hyun-Jin;KWON, Lee-Seung;JUNG, Min-Jae;YEO, Og-Gyu;KIM, Young-Do;KWON, Woo-Taeg
    • The Korean Journal of Food & Health Convergence
    • /
    • v.6 no.5
    • /
    • pp.19-25
    • /
    • 2020
  • The purpose of this study was to research and develop a step-type chemical liquid deodorizer including a liquid catalyst that can prevent civil complaints due to odor due to its excellent deodorizing performance. The main composition of chemical liquid deodorizer including liquid catalyst is cleaning deodorization, catalyst deodorization, chemical deodorization, water film plate, deodorization water circulation device, deodorization water injection device, catalyst management system, gas-liquid separation device, chemical supply device, deodorizer control panel, etc. It consists of a device. The air flow of the step-type liquid catalyst chemical liquid deodorizer is a technology that firstly removes basic odor substances, and the liquid catalyst installed in the subsequent process stably removes sulfur compounds, which are acidic odor substances, to discharge clean air. The efficiency of treating the complex odor of the prototype was 98.5% for the first and 99.6% for the second, achieving the target of 95%. The hydrogen sulfide treatment efficiency of the prototype was 100% for the first and 99.9% for the second, which achieved 95%, which was the target of the project. As a result, ammonia was removed by the reaction of ammonia and hydrogen sulfide.

Transient State Theory of Significant Liquid Structure applied to Water (액체구조에 관한 천이상태이론의 물에 대한 적용)

  • Pak, Hyung-Suk;Chang, Sei-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.91-97
    • /
    • 1966
  • The partition function for liquid water is developed according to the transient state theory of significant liquid structure proposed by Pak, Ahn and Chang. This theory assumes that the molecules may possess solid-like, transient and gas-like degrees of freedom in liquid state. Although liquid water has several special properties, for example, minimum molar volume at 4^{\circ}C$, the general theory of liquid can be applied successfully. The theoretically calculated values for thermodynamic properties at the liquid temperature range and for the critical properties are in good agreement with the observed values.

  • PDF

Characterization of Sprays used Ultrasonic Vibrant Plate with the Surface roughness (초음파 진동판의 표면조도에 따른 분무특성에 관한 연구)

  • Lee, Jun-Baek;Jeon, In-Kon;Jeon, Heung-Shin
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.732-737
    • /
    • 2000
  • The purpose of this study is to compare the SMD(Sauter mean diameter) with different vibrant plates. Each vibrant plates have different surface roughness. Also liquid film thickness are measured for explanation how to concern atomization. Ultrasonic waves is used for vibration. Immersion liquid method is used for the measure of SMD and also liquid film thickness is measured using of point needle method. Distilled water and gasoline fuel are used to liquids. Supplied liquid flow rates are $18{\sim}296cc/min$. Centerline average roughness of vibrant plates are 0.5, 2.0, 4.7, $9.5\;{\mu}m$ and diameter of vibrant plate is 60mm. In result, good atomization of liquid is obtained in widen flow rates. The mean droplet size is increased in orders of 4.7, 2.0. 9.5, $0.5\;{\mu}m$ surface roughness. Distilled water has a big mean droplet size than gasoline fuel in low flow rate. Above the 78cc/min flow rates, distilled water has a small mean droplet size than gasoline fuel. Liquid films changes are measured with ultrasonic power. Also, cavitation effect on sprays is observed.

  • PDF

Compressibility of fine-grained sediments based on pore water salinity changes

  • Junbong Jang;Handikajati Kusuma Marjadi
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.113-120
    • /
    • 2023
  • Coastal and offshore structures such as ports and offshore wind farms will often need to be built on fine-grained sediments. Geotechnical properties associated with sediment compressibility are key parameters for marine construction designs especially on soft grounds, which involve clay-mineral dominated fines that can consolidate and settle significantly in response to engineered and environmental loads. We conduct liquid limit tests and 1D consolidation tests with fine-grained soils (silica silt, mica, kaolin and bentonite) and biogenic soils (diatom). The pore fluids for the liquid limit tests include deionized water and a series of brines with NaCl salt concentrations of 0.001 m, 0.01 m, 0.1 m, 0.6 m and 2.0 m, and the pore fluids for the consolidation tests deionized water, 0.01 m, 0.6 m, 2 m. The salt concentrations help the liquid limits of kaolin and bentonite decrease, but those of diatom slightly increase. The silica silt and mica show minimal changes in liquid limit due to salt concentrations. Accordingly, compression indices of soils follow the trend of the liquid limit as the liquid limit determined the initial void ratio of the consolidation test. Diatoms are more likely to be broken than clastic sediments during to loading, and diatom-rich sediment is therefore generally more compressible than clastic-rich sediment.

Characteristics of Water Droplets in Gasoline Pipe Flow (가솔린 송유관에서의 수액적 거동 특성)

  • Kim, J.H.;Kim, S.G.;Bae, C.;Sheen, D.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Liquid fossil fuel contaminated by water can cause trouble in the combustion processes and affect the endurance of a combustion system. Using an optical sensor to monitor the water content instantaneously in a fuel pipeline is an effective means of controlling the fuel quality in a combustion system. In two component liquid flows of oil and water, the flow pattern and characteristics of water droplets are changed with various flow conditions. Additionally, the light scattering of the optical sensor measuring the water content is also dependent on the flow patterns and droplet characteristics. Therefore, it is important to investigate the detailed behavior of water droplets in the pipeline of the fuel transportation system. In this study, the flow patterns and characteristics of water droplets in the turbulent pipe flow of two component liquids of gasoline and water were investigated using optical measurements. The dispersion of water droplets in the gasoline flow was visualized, and the size and velocity distributions of water droplets were simultaneously measured by the phase Doppler technique. The Reynolds number of the gasoline pipe flow varied in the range of $4{\times}10^{4}\;to\;1{\times}10^{3}$, and the water content varied in the range of 50 ppm to 300 ppm. The water droplets were spherical and dispersed homogeneously in all variables of this experiment. The velocity of water droplets was not dependent on the droplet size and the mean velocity of droplets was equal to that of the gasoline flow. The mean diameter of water droplets decreased and the number density increased with the Reynolds number of the gasoline flow.

  • PDF

A Study on Ultrasonic Effects for the Atomization in a Twin-Fluid Spray (2-유체 분무에서 액체미립화에 대한 초음파의 영향에 관한 연구)

  • Ju, E.S.;Chung, J.D.;Song, M.G.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.50-57
    • /
    • 1998
  • The utilization of resonance should be considered to get the maximum effect of ultrasonic to atomize liquid. The ultrasonic generator, transducer, horn, and all attached parts are used to produce the resonance, and specially the characteristics of liquids such as liquid load, property, and etc., for the liquid atomization affinity are considered. In this study, the variable device of liquid load was made and distilled water and city water selected as experimental liquids were sprayed by a twin-fluid spray method and their diameters, distributions, and spray quantum of spray droplets were measured by the light scattering system. And all data were observed, compared and considered relatively. In results, a lot of phenomena of liquid atomization affinity by ultrasonic appeared in accordance with liquid loads, namely head h.

  • PDF

Effects of Fermented Liquid Dough on Bread Quality (발효액종이 빵의 품질에 미치는 영향)

  • Chung, Yoon-Kyung;Jang, Dae-Hoon
    • The Korean Journal of Community Living Science
    • /
    • v.26 no.1
    • /
    • pp.127-133
    • /
    • 2015
  • This study identifies the factors improving bread quality by using fermented liquid dough. Fermented liquid dough, the main part of bread dough, contains yeasts that are prepared in order to enhance the fermentation rate. This study investigates the fermentation rate after mixing dough, the pH of dough, loaf volume, water activity, hardness, and sensory properties of loaf bread samples with different amounts of fermented liquid dough. The fermentation rate was slightly higher in the bread samples, the control dough and 10% fermented liquid dough, than in samples with more than 20% dough. The pH values of dough decreased with an increase in the content of fermented liquid dough. The loaf volume of bread with 10% fermented liquid dough was the highest. The water activity of loaf bread increased with an increase in amount of fermented liquid dough. For the sensory evaluation of loaf bread, adding 10% fermented liquid dough improved the loaf volume and evenness of baking. These results suggest that 10% fermented liquid dough increased the fermentation rate and bread quality. Further research is required to enhance internal quality characteristics of loaf bread, including taste and flavor.

A Study on the Behavior of Nano-fluid Droplet Impacting Upon a Hot Surface (고온벽과 충돌하는 나노유체 액적 거동에 관한 연구)

  • Kim, E.DD.;Park, I.H.;Bae, N.H.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, the behavior of water or nanofluid droplets impacting upon a hot surface was investigated by visualization of impacting phenomena with time-delayed photographic technique. Changing the mass ratio of nanofluid and the temperature of the heated surface, the characteristics of the spreading behavior and the diameter of spreading liquid film was compared between water and nanofluid droplets. The impacting droplet spreaded as a liquid film after impact and nanofluid droplets spreaded more widely than water droplets. After reaching the maximum diameter, water droplets shrinked more than nanofluid droplets. Based on this, the heat transfer area from a hot surface to impacting nanofluid droplets would be wider than that of impacting water droplets. Considering individual impacting droplet only, spray cooling using nanofluid would be better than using water.