• Title/Summary/Keyword: Liquid viscosity

Search Result 547, Processing Time 0.036 seconds

Spray Characteristics of Diesel Fuel with Oxygenates (함산소 물질이 혼합된 디젤연료의 분무특성)

  • Ryu, Keun-Young;Ha, Jong-Suk;No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.6 no.3
    • /
    • pp.38-44
    • /
    • 2001
  • The effect of four diesel fuels with oxygenated agents fuels on spray properties from plain-orifice atomizer was investigated. The oxygenates evaluated were diglyme, MTBE, DEE and DMM and were blended in weights of 5, 10, 15, 20 and 30% in a baseline diesel fuel. The physical properties such as surface tension, density and viscosity are also measured for each blended oxygenated fuels. It was found that changes in physical properties of fuels considered are enough to influence spray properties, i.e. spray angle, spray tip penetration and mean drop size. Spray properties were measured by PMAS(particle motion analysis system) which is employing a point measurement technology. Spray angle increased with increase in oxygenate content. The effect, however, was not great in the higher blend level. The oxygenated fuels produced more shorter spray tip penetration than diesel fuels. SMD was decreased with the increase in blending percent. SMD for DMM and DEE are represented 10.33 and 3.41% decreasing rates respectively. It was found that changes in spray characteristics of oxygenated fuel were easily large enough to impact pollutant emissions. It was clear from this study that spray characteristics of oxygenated fuel is one of possible cause of reducing pollutant emissions. It was clear from this study that spray characteristics of oxygenated fuel is one of possible cause of reducing pollutant emissions from diesel engines when oxygenated fuels is applied.

  • PDF

A Study on Spray Characteristics of Biodiesel Derived from Waste Cooking Oil (폐식용유 바이오디젤 연료의 분무특성에 관한 연구)

  • Ahn, Sangyeon;Kim, Woong Il;Lee, Chang Sik
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.182-187
    • /
    • 2013
  • This study was performed to investigate the effect of biodiesel derived from waste cooking oil on the spray behavior and macroscopic spray characteristics. To analyze quantitative characteristics of test fuels, injection quantity was measured at various injection pressures and the spray images of injected fuels in the pressurized chamber were obtained by using a high speed camera and image analysis system. Based on the measured spray images, the spray tip penetration and spray cone angle were investigated at various energizing timings and injection pressures. In this work, the experimental results showed that the injection quantity of waste cooking biodiesel indicated the higher quantities than diesel at high injection pressure. As the injection pressure was increased, the spray tip penetrations of biodiesel were higher value than diesel. The difference of penetration between biodiesel and conventional diesel fuel was reduced in accordance with the increase of injection pressure. Also, the spray angles of diesel were larger than that of biodiesel because diesel fuel has lower viscosity than biodiesel. In addition, the spray evolution processes of biodiesel fuel at various injection pressures and the elapsed time after the injection were compared to the conventional diesel fuel.

The Effects of CdO Addition on the Orientation Process of Bi-Sr-Ca-Cu-O Supercoducting Thick Film (Bi계 초전도 후막의 배향과정에 CdO 첨가의 영향)

  • 한영희;성태현;한상철;이준성;정상진
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.47-50
    • /
    • 1999
  • The orientation mechanism of an amorphous $Bi_{2}$$Sr_{2}$$Ca_{2 x}$$Cd_{x}$$Cu_{3}$$O_{y}$ phase were studied by using the dilatometry. The amorphous $Bi_{2}$$Sr_{2}$$Ca_{2 x}$$Cd_{x}$$Cu_{3}$$O_{y}$ samples brought about a volume shrinkage at the onset of the crystallization of a $Bi_{2}$$Sr_{2}$$CaCu_{2}$$O_{6}$phase around $400^{\circ}C$. The random crystal growth of $Bi_{2}$$Sr_{2}$$CaCu_{2}$$O_{8}$ phase around $800^{\circ}C$. yielded a rapid volume expansion and after then samples shrinmed, accompanied with the crystal orientation. The$Bi_{2}$$Sr_{2}$$Ca_{2 x}$$Cd_{x}$$Cu_{3}$$O_{y}$ (x=0.4) sample exhibited the best-oriented structure because the liquid phase formed seemed to have the lowest viscosity which would contributed to the easy collapse of the card-house structure.

  • PDF

Comparison of Potential and Viscous Codes for Water Entry Problem

  • Kwon, Sun-Hong;Park, Chang-Woo;Shin, Jae-Young
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.32-36
    • /
    • 2012
  • This paper presents a comparison of potential and viscous computational codes for the water entry problem. A po-tential code was developed which adopted the boundary element method to solve the problem. A nonlinear free surface boundary condition was integrated to find new locations of free surface. The dynamic boundary condition was simplified by taking constant potential values for every time steps. The simplified dynamic boundary condition was applied in the new position of the free surface not at the mean level, which is the usual practice for linearized theory. The commercial code FLUENT was used to solve the water entry problem from the viscosity point of view. The movement of the air-liquid interface is traced by distribution of the volume fraction of water in a computational cell. The pressure coefficients were compared with each other, while experimental results published by other researchers were also examined. The characteristics of each method were discussed to clarify merits and limitations when they were applied to the water entry problems.

Prediction and Measurement of Residual Stresses in Injection Molded Parts

  • Kwon, Young-Il;Kang, Tae-Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.203-211
    • /
    • 2001
  • Residual stresses were predicted by a flow analysis in the mold cavity and residual stress distribution in the injection molded product was measured. Flow field was analyzed by the hybrid FEM/FDM method, using the Hele Shaw approximation. The Modified Cross model was used to determine the dependence of the viscosity on the temperature and the shear rate. The specific volume of the polymer melt which varies with the pressure and temperature fields was calculated by the Tait\`s state equation. Flow analysis results such as pressure, temperature, and the location of the liquid-solid interface were used as the input of the stress analysis. In order to calculate more accurate gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise direction was predicted in two cases, the free quenching, under the assumption that the shrinkage of the injection molded product occurs within the mold cavity and that the solid polymer is elastic. Effects of the initial flow rate, packing pressure, and mold temperature on the residual stress distribution was discussed. Experimental results were also obtained by the layer removal method for molded polypropylene.

  • PDF

Numerical Study on Bubble Growth and Droplet Ejection in a Bubble Inkjet Printer (버블 잉크젯에서의 기포성장 및 액적분사에 관한 수치적 연구)

  • Suh, Young-Ho;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1107-1116
    • /
    • 2006
  • The droplet ejection process driven by an evaporating bubble in a thermal inkjet printhead is investigated by numerically solving the conservation equations for mass, momentum and energy. The phase interfaces are tracked by a level set method which is modified to include the effect of phase change at the interface and extended for multiphase flows with irregular solid boundaries. The compressibility effect of a bubble is also included in the analysis to appropriately describe the bubble expansion behaviour associated with the high pressure caused by bubble nucleation. The whole process of bubble growth and collapse as well as droplet ejection during thermal inkjet printing is simulated without employing a simplified semi-empirical bubble growth model. Based on the numerical results, the jet breaking and droplet formation behaviour is observed to depend strongly on the bubble growth and collapse pattern. Also, the effects of liquid viscosity, surface tension and nozzle geometry are quantified from the calculated bubble growth rate and ink droplet ejection distance.

Experimental Study on the Macroscopic Spray Characteristics of DME Fuel (DME 연료의 거시적 분무특성에 관한 실험적 연구)

  • Park, Jeong-Hwan;Park, Su-Han;Lee, Chang-Sik;Park, Sung-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.115-123
    • /
    • 2010
  • The purpose of this study is to compare and to investigate spray characteristics of dimethyl ether (DME) and diesel fuel in the various injection pressures, ambient pressures, and the energizing durations. For the analysis of the spray characteristics, the spray visualization system including the high speed camera and the spray image analyzer is installed. The spray characteristics such as the spray development process, spray tip penetraion and the spray cone angle are analyzed from the spray images. It was revealed that the spray characteristics of DME and diesel fuels are mainly affected by the injection conditions. However, in the region after the end of the injection, the spray tip penetration was affected by the fuel properties such as the fuel density, the surface tension, and the viscosity. DME fuel has generally a short tip penetration and a wide cone angle. In the elevating conditions of the ambient gas pressure, the spray cone angle of DME fuel converged to high value when comparing diesel fuel in advance. Also, the increasing rate of the spray tip penetration in DME fuel is significantly decreased from 0.7 ms of the energizing duration (diesel : 0.9 ms).

Comparison of Spray Characteristics according to Physical Properties of Ethanol/Gasoline Blended Fuel (에탄올/가솔린 혼합연료의 물리적 특성에 따른 분무 특성 비교)

  • Kim, Woong Il;Kim, Youngkun;Lee, Hwang Bok;Lee, Kihyung
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.109-115
    • /
    • 2017
  • The aim of this study is to investigate the effect of physical properties of fuels on spray characteristics in the gasoline direct injection system. Injection rate, spray visualization, and spray pattern experiments were performed to analyze the spray characteristics of ethanol, gasoline, and ethanol/gasoline blends. We measured injection rate of each fuel via the Bosch method. The spray visualization experiment was also carried out at atmospheric pressure using a high-speed camera. Finally, the average of drop surface area per unit volume was measured using the optical patternator. The experimental results from Bosch method showed that peak injection rate increased when the volume fraction of ethanol increased. In addition, higher viscosity of ethanol than that of gasoline leads to longer injection delay. At the initial injection region before reaching 0.8 ms, the spray tip penetration becomes longer as increasing the volume fraction of ethanol, but reversely shorter after 0.8 ms. It was found that ethanol makes spray angle become larger. The surface area per unit volume of the drop was decreased as the distance from the injection tip or the concentration of the gasoline increased.

Curing Characteristics for Projection Stereolithography based on LCD and Visible LED (LCD 와 가시광선 LED 기반의 광조형 시스템을 위한 수지의 경화 특성)

  • Kim, Ga Young;Ha, Young Myoung;Park, In Baek;Kim, Min Sub;Jo, Kwang Ho;Lee, Seok Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.878-884
    • /
    • 2013
  • Stereolithography can be classified into two main categories according to the cross-sectional shape: scanning type and projection type. Projection stereolithography has significant advantages when making a layer using a single patterned beam, and results in improved speed and accuracy. To implement relatively low-cost projection stereolithography, we developed a system using a commercially available resin, which cures on exposure to visible light. The optimum photoinitiator was investigated, as well as the mixing ratio. The viscosity, shrinkage, curing depth and tensile strength were evaluated through several experiments on fabricated three-dimensional structures, and thus an optimal resin selection system was developed.

Stability and Thermo-physical Properties of Nanofluids and Its Applications (나노유체의 분산안정성 및 열물성치와 그 응용에 관한 연구)

  • Hwang, Y.;Lee, K.;Kim, K.;Lee, J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.474-478
    • /
    • 2008
  • It has been shown that a nanofluid consisting of nanoparticles dispersed in base fluid has much higher effective thermal conductivity than pure fluid. In this study, four kinds of nanofluids such as multiwalled carbon nanotube (MWCNT) in water, CuO in water, SiO2in water, and CuO in ethylene glycol, are produced. Their thermal conductivities are measured by a transient hot-wire method. The thermal conductivity of water-based MWCNT nanofluid is shown to be increased by up to 11.3% at a volume fraction of 0.01. The measured thermal conductivities of MWCNT nanofluids are higher than those calculated with Hamilton-Crosser's model due to neglecting solid-liquid interaction at the interface. The results show that the thermal conductivity enhancement of nanofluids depends on the thermal conductivities of both particles and the base fluid. Stability of nanofluids is estimated by UV-vis spectrum analysis. Stability of nanofluid depends on the type of base fluid and the suspended particles. Also it can be improved in addition of a surfactant.

  • PDF