• Title/Summary/Keyword: Liquid viscosity

Search Result 547, Processing Time 0.029 seconds

A Simplified Phenomenological Theory of Viscosity for Liquid Metals

  • Kim, Won Su;Chae, Dong Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.43-45
    • /
    • 2001
  • This study simplifies the phenomenological theory of viscosity previously proposed by the present authors. This simplified theory has only two thermodynamic properties and one parameter, as opposed to its predecessor, which has many, allowing for easy calculation of the liquid viscosities. The viscosity of liquid metals, an excellent test for checking the validity of the liquid theory, can be calculated using the equation based on the simplified theory. The calculated results by the current theory turn out to be good for the liquid metals, including sodium, potassium, rubbidium, cesium, lead and mercury.

Effect of liquid viscosity on the degree of uniformity of drops from swirl spray nozzles (와류 분무 노즐에 의해 형성되는 액적들의 균일도에 액체의 점도가 미치는 영향)

  • 이상용;김인구;조한권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.538-546
    • /
    • 1989
  • Effect of liquid viscosity was studied experimentally on the drop size distributions of the liquid sprays from swirl atomizers. Glycerine-Water mixtures were used as test fluids for the experiments. Drop sizes of the liquid sprays were measured with the light scattering method. The concept of the standard deviation was introduced to represent the degree of uniformity of the drop size distributions. Experimental results show that the spray drops become coarser and less uniform with the liquid of higher viscosity. The effect of viscosity on the Sauter mean diameter and the standard deviation appeared to be more significant with the lower injection pressure. It was also confirmed that the Sauter mean diameter increases with the increase of the liquid viscosity and with the decrease of the injection pressure.

A Study on the Measurement of Viscosity by the Small Capacity Torque Transducer (미소용량형 토크변환기에 의한 점도측정에 관한 연구)

  • Kim, Gap-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.16-21
    • /
    • 1999
  • Recently, the rheology on the fluidity of materials has been progressed remarkably. Viscosity measurement for precision-accuracy has needed very important to measure the rheological properties of materials in the field of chemistry-fiber, paint, printing-ink, plastics, rubber, foodstuff-industry, etc. And many methods of measurement have been developed lately. So in this experimental study, small capacity torque transducer with type of strain gage, different method against other existing viscometers, measured viscosity about a liquid that has flowing characteristics of newtonian liquid. Using the assumed computational equation of viscosity, it has same value of viscosity in each different radius of rotating cylinder. In the result, this equipment will be used in the viscosity measurement of a liquid taking flowing characteristics of newtonian liquid.

  • PDF

Effect of liquid viscosity on internal flow and spray characteristics of Y-jet atomizers (액체 점도에 따른 Y-jet 노즐 내부 유동 및 분무 특성의 변화)

  • Song, Si-Hong;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4053-4061
    • /
    • 1996
  • Internal flow characteristics within Y-jet atomizers and the local drop size distribution and cross-sectional averaged drop size at the outside were investigated with the liquid and air injection pressures, mixing port length of atomizers, and the liquid properties taken as parameters. To examine the effect of the liquid viscosity, glycerin-water mixtures were used in this study. The liquid viscosity plays only a minor role in determining the internal flow pattern and the spatial distribution shape of drops, but the drop sizes themselves generally increase with increasing of the liquid viscosity. An empirical correlation for the liquid discharge coefficient at the liquid port was deduced from the experimental results; the liquid discharge coefficient strongly depends on the liquid flow area at the mixing point which is proportional to the local volumetric quality(.betha.$_{Y}$), and the volumetric quality was included in the correlation. Regardless of the value of the liquid viscosity, the compressible flow through the gas port was well represented by the polytropic expansion process(k=1.2), and the mixing point pressure could be simply correlated to the aspect ratio( $l_{m}$/ $d_{m}$) of the mixing port and the air/liquid mass flow rate ratio( $W_{g}$/ $W_{f}$) as reported in the previous study.udy.udy.y.

Development of Surface Acoustic Wave Sensor for Viscosity Measurement of Low Viscose Liquid Using Love Wave (Love파를 이용한 저점성 유체 점도 측정용 표면 탄성파 센서 개발)

  • Lee, Sang-Dae;Kim, Ki-Bok;Lee, Dae-Su
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.282-287
    • /
    • 2008
  • Love wave is one of the shear horizontal waves and it can propagate between two layers in liquid without energy loss. The SAW (surface acoustic wave) sensor using Love wave is very useful for real time measurement of the viscosity of liquid with high sensitivity. In this study, the 77 MHz and 155 MHz Love wave SAW sensors were fabricated and use to measure the viscosity of low viscous liquid. To generate the surface acoustic wave, the inter-digital transducers were fabricated on the quartz crystal wafer. In order to obtain the optimal thickness of the coating film (novolac photoresist) generating the Love wave on the surface of SAW device, theoretical calculation was performed. The performances of fabricated Love wave SAW sensors were tested. As test liquid, pure water and glycerol solutions having different concentrations were used. Since the determination coefficients of the regression equations for measuring the viscosity of liquid are greater than 0.98, the developed Love wave SAW sensors in this study will be very useful for precise measurement of viscosity of liquid.

Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

  • Zou, Chang-Fang;Wang, De-Yu;Cai, Zhong-Hua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.670-690
    • /
    • 2015
  • In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

A Study of the Thickness Characteristics of the Liquid Sheet Formed by an Impinging Jet onto a Plate (평판 충돌 제트로 생성되는 액막의 두께 분포 특성 연구)

  • Kim, M.S.;Oh, J.H.;Jeong, H.M.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.27 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • In this study, the thickness of the liquid sheet formed by a low speed impinging jet onto a flat plate was measured by the direct contact method. The spatial distribution characteristics of the sheet thickness in the radial and circumferential directions, and the effects of jet velocity and liquid viscosity were analyzed. The measurement results were compared with the theoretical predictions. The wavy surface was observed in the case of low viscosity water, but not in the high viscosity aqueous glycerol solutions. The sheet thickness increased as the circumferential angle increased or the distance from the impinging point increased, but the thickness decreased as the circumferential angle increased around the impinging point. As the jet speed increased, the sheet thickness decreased, and the sheet thickness increased as the liquid viscosity increased. Comparison with the theoretical predictions showed that the measurement results agreed well in the case of low viscosity water or high viscosity liquids around the impinging point. The distribution characteristics of the sheet thickness can provide useful means for prediction of spray characteristics in splash plate injectors.

A Study on the Thickness Characteristics of the Liquid Sheet Formed by an Impinging Jet Onto a Wall (벽 충돌 제트로 생성되는 액막의 두께 분포 특성 연구)

  • J. S. Lee;T. Y. Lee;J. M. Jo;B. S. Kang
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.68-74
    • /
    • 2023
  • In this study, the thickness of the liquid sheet formed by a low speed impinging jet onto a wall was measured by the direct contact method. The spatial distribution characteristics of the sheet thickness in the radial and circumferential directions, and the effects of jet velocity and liquid viscosity were analyzed. The measurement results were compared with the theoretical predictions for two impinging jets. The wavy surface was observed for low viscosity water, but not for high viscosity glycerol solutions. The sheet thickness decreased as the circumferential angle or the distance from the impinging point increased. The sheet thickness increased as the liquid viscosity increased. Comparison with the theoretical predictions showed some differences from the measurement results.

A Study on the Characteristics of the Liquid Sheet Formed by a Splash Plate Nozzle at Low Jet Velocities (충돌벽 노즐의 저속 제트에 의한 액막 특성 연구)

  • H. U. Park;J. D. Kim;G. E. Song;B. S. Kang
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.75-82
    • /
    • 2024
  • In this study, the thickness of the liquid sheet formed by a splash plate nozzle at low jet velocities was measured by the direct contact method. The spatial distribution characteristics of the sheet thickness in the radial and circumferential directions, and the effects of jet velocity and liquid viscosity were analyzed. The wavy surface was observed for low viscosity water, but not for high viscosity glycerol solutions. The sheet thickness decreased as the circumferential angle or the distance from the impinging point increased. The sheet thickness increased as the liquid viscosity increased. Comparison with the theoretical predictions for two impinging jets showed some differences from the measurement results.

The Effect of Viscosity on the Spray Characteristics of Pressure Swirl Atomizer (스월분무특성에 미치는 점성의 영향)

  • Yoon, S.J.;Cho, D.J.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.24-29
    • /
    • 1999
  • In the pressure swirl atomizer, the liquid is injected through tangential passages into a swirl chamber, from which it emerges with both tangential and axial velocity components to form a thin conical sheet at the nozzle exit. This sheet rapidly attenuates, finally disintegrating into ligaments and then drops. The purpose of this study is to measure the spray characteristics according to variation of viscosity of the spray produced by the pressure swirl atomizer. The nozzle tested here were especially designed for this investigation. The discharge coefficient is determined by measuring the volume flow rate with a flow meter and the cone angle of the liquid sheets issuing from the nozzle is obtained from series of photographs of the sheet for various liquid viscosity and injection pressure. And mean drop size is measured by image processing method. It is found that the geometrical characteristics of the nozzle and the variation of viscosity were the influential parameters to determine the spray characteristics such as the cone angle, discharge coefficients and SMD.

  • PDF