• 제목/요약/키워드: Liquid velocity

검색결과 1,067건 처리시간 0.023초

반용융 단조공정에 있어서 제조 조건이 성형성과 기계적 성질에 미치는 영향 (The Effects of Fabrication Conditions on Forging Limitation and Mechanical Property in Semi-Solid Forming Process)

  • 정경득;강충길
    • 소성∙가공
    • /
    • 제10권3호
    • /
    • pp.214-222
    • /
    • 2001
  • The homogeneous distribution of solid region without liquid segregation is important in terms of high quality component during thixoforming process. In closed die semi-solid forging process, liquid segregation is strongly affected by injection velocity than solid fraction because the material has to travel relatively long distance to fill the cavity through a narrow gate. The designed die by computer simulation data was used to thixoforging process. The thixoforming velocity to prediction the liquid segregation had been determined with strain rate associated with multistage velocity control during compression test of semi-solid material. The optimal forging velocity and die temperature were investigated to produce the near-net-shape compressor component. The mechanical properties of thixoformed component were tested with various die and material temperatures before and after heat treatment.

  • PDF

Review of Experimental Studies on Swirling Flow in the Circular Tube using PIV Technique

  • Chang, Tae-Hyun;Nah, Do-Baek;Kim, Sang-Woo
    • 한국가시화정보학회지
    • /
    • 제7권1호
    • /
    • pp.21-28
    • /
    • 2009
  • The study of swirling flow is of technical and scientific interest because it has an internal recirculation field, and its tangential velocity is related to the curvature of streamline. The fluid flow for tubes and elbow of heat exchangers has been studied largely through experiments and numerical methods, but studies about swirling flow have been insufficient. Using the particle image velocimetry(PTV) method, this study found the time averaged velocity distribution with swirl and without swirl along longitude sections and the results appear to be physically reasonable. In addition, streamwise mean velocity distribution was compares with that of other. Furthermore, other experimental investigation was performed to study the characteristics of turbulent water flow in a horizontal circular tube by using liquid crystal. 2D PIV technique is employed for velocity measurement and liquid crystal is used for heat transfer experiments in water. Temperature visualization was made quantitatively by calibrating the colour of the liquid crystal versus temperature using various approaches.

충돌 제트로 형성되는 분무의 속도 특성에 대한 연구 (A Study on the Velocity Characteristics of the Spray Formed by Two Impinging Jets)

  • 추연준;오대진;강보선
    • 한국분무공학회지
    • /
    • 제6권2호
    • /
    • pp.1-8
    • /
    • 2001
  • In this study, the velocity characteristics of liquid elements formed by two impinging jets is analysed using double pulse image capturing technique. For the droplets formed by low speed impinging jets, the droplet velocities are higher with smaller azimuthal and impingement angle. The maximum droplet velocities are about 25 % lower than jet velocity. With an increase of azimuthal angle, the shedding angles increases but remains lower than azimuthal angle. The velocities of ligaments formed by high speed impinging jets gradually decreases with an increase of azimuthal angle. The maximum ligament velocities are about 40% lower than jet velocity. Higher impingement angles produce lower ligament velocities. The shedding angles of ligament almost increases with the same value of azimuthal angle, which implies that the moving direction of ligaments is radial from the origin as the impingement point.

  • PDF

감온액정을 이용한 층류유동의 속도장에 관한 실험적 연구 (An Experimental Study on Laminar Flow Velocity by Using Thermo-sensitive Liquid Crystal)

  • 장태현
    • 한국산업융합학회 논문집
    • /
    • 제7권1호
    • /
    • pp.19-24
    • /
    • 2004
  • An experimental investigation was performed to study the characteristics of laminar water flow in a horizontal circular tube by using liquid crystal. A simultaneous measurement technique has been employed to measure the velocity field in a two-dimensional cross section of fluid flow. This study found the velocity distributions for Re = 1,594 ~ 2,510 along longitudinal sections and the results appear to be physically reasonable. To determine some characteristics of the laminar flow, 2D PIV technique is employed for velocity measurement by using liquid crystal in water. The experimental rig was manufactured from an acryle tube. The test tube diameter of 25mm, and a length of 1200mm. The used algorithm is the gray level cross-correlation method by using Kimura et al. in 1986.

  • PDF

수직상향 기체주입시 기포거동에 관한 연구 (A Study on the Bubble Behavior in the Vertical-upward Gas Injection)

  • 서동표;오율권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.712-716
    • /
    • 2003
  • In the present study, the gas injection system based on air-water model was designed to investigate the behavior characteristics of bubbles injected into a ladle. The parameters such as gas volume fraction and bubble rise velocity were exprementally measured in a gas-liquid flow region. To measure gas volume fraction, an electo-conductivity probe was used and bubble rise velocity was obtained by a high speed CCD camera. Gas volume fraction was symmetric to the axis of nozzle secured on the bottom of a ladle. The bubble rise velocity was calculated for two different experimental conditions. That is, gas flow conditions were following two case: 1) Q = $0.63{\times}10^{-4}$ $m^{3}/s$, 2) $1.26{\times}10^{-4}$ $m^{3}/s$. As a gas injected into the liquid ladle, the liquid-phase region is circulated by bubbles' behavior. The bubble rise velocity was influenced of the circulation flow of liquid phase. As a result, the bubble rise velocity was appeared higher middle region of ladle than near the nozzle.

  • PDF

회전컵 무화기의 미립화 특성에 관한 실험적 연구 (An Experimental Study on the Atomization Characteristics of the Rotary Cup Atomizer)

  • 진승범;조대진;윤석주
    • 한국분무공학회지
    • /
    • 제6권4호
    • /
    • pp.14-21
    • /
    • 2001
  • Rotary atomizer is widely used in practical application ranging from combustion, cooling, spray drying, agriculture, chemical system. Rotary cup atomizer has some advantages such as extreme versatility and liquid atomization successfully varying widely in viscosity. In rotary atomization, the feed liquid is centrifugally accelerated to high velocity and the liquid extends over the rotating surface as a thin film before being discharged into an atmosphere. The degree of rotary atomization depends upon peripheral speed, feed rate, liquid properties and atomizer design. An important asset is that thickness and uniformity of the liquid sheet can readily be controlled by regulating the liquid flow rate and the rotational speed. LDPA(Laser Diffraction Particle Analyser) and image aquisition system are used to measure drop size distribution and spray pattern. The atomization characteristics of the rotary cup atomizer is investigated experimentally by varing the liquid feed rate, rotary cup speed and air velocity for atomization. As a results, the effect of air velocity on the atomization characteristics such as drop size and spray uniformity is considerably greater than variation of those with liquid feed rate.

  • PDF

액막류의 MHF 점에 관한 실험적 연구 (Experimental Study on Minimum Heat Flux Point of Liquid Film Flow)

  • 김영찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.208-213
    • /
    • 2001
  • The minimum heat flux conditions are experimentally investigated for the subcooled liquid film flow on the horizontal plate. The experimental results show that the minimum heat flux point temperature becomes higher with the increase of the velocity and the subcooling of the liquid film flow. However, the effect of distance from the leading edge of the heat transfer plate on the minimum heat flux is almost negligible. Also, the experimental results show that the propagation velocity of wetting front increase with increasing the velocity and the subcooling of the liquid film flow.

  • PDF

분사각 변화에 따른 횡단류에 분사되는 액체제트의 분무특성에 대한 수치적 연구 (Numerical Study for Spray Characteristics of Liquid Jet in Cross Flow with Variation of Injection Angle)

  • 이관형;고정빈;구자예
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.161-169
    • /
    • 2006
  • The spray characteristics of liquid jet in cross flow with variation of injection angle are numerically studied. Numerical analysis was carried out using KIVA code, which was modified to be suitable for simulating liquid jet ejected into cross flow. Wave model and Kelvin-Helmholtz(KH)/Rayleigh-Taylor(RT) hybrid model were used for the purpose of analyzing liquid column, ligament, and the breakup of droplet. Numerical results were compared with experimental data in order to verify the reliability of the physical model. Liquid jet penetration length, volume flux, droplet velocity profile and SMD were obtained. Penetration length increases as flow velocity decreases and injection velocity increases. From the bottom wall, the SMD increases as vertical distance increases. Also the SMD decreases as injection angle increases.

모델에 의한 흡배관내 연료유동의 거동에 관한 실험염구 (An experimental study on the behavior of fuel flow in intake manifold by the model)

  • 박경석
    • 오토저널
    • /
    • 제5권3호
    • /
    • pp.33-44
    • /
    • 1983
  • This paper deals with the experimental study on the behavior of fuel (methanol) in intake manifold by using the basic apparatus which is manufactured the visible straight tube type model. In this study, the new device for liquid film thickness measurement and vaporization rate measurement are introduced to investigate the variation of liquid film thickness along the intake manifold and to observe the effect of vaporization of injected fuel. the results are summarized as follows: 1) The vaporization rate increases in proportion to decreasing of throttle valve angle and growing air fuel ratio. 2) The liquid film thickness along the intake manifold is mostly independent for the throttle valve angle in low air velocity and then affected in high air velocity, but the distribution of the liquid film thickness on circumferential position almost constant in the region of 300mm down stream from carburetor. 3) The mean liquid film thickness is 0.04 - 0.18mm in case of methanol in the region of air velocity Va = 12m/s - 55m/s and decreases with decreasing the throttle valve angle.

  • PDF

Effect of Liquid Circulation Velocity and Cell Density on the Growth of Parietochloris incisa in Flat Plate Photobioreactors

  • Changhai Wang;Yingying Sun;Ronglian Xing;Liqin Sun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권2호
    • /
    • pp.103-108
    • /
    • 2005
  • For more accurately describing the durations of the light and the dark phases of micro-algal cells over the whole light-dark cycle, and probing into the relationship between the liquid circulation time or velocity, the aeration rate and cell density, a series of experiments was carried out in 10 cm light-path flat plate photobioreactors. The results indicated that the liquid flow in the flat plate photobioreactor could be described by liquid dynamic equations, and a high biomass output, higher content and productivity of arachidonic acid, $70.10\;gm^{-2}d^{-1},\;9.62\%$ and 510.3 mg/L, respectively, were obtained under the optimal culture conditions.