• Title/Summary/Keyword: Liquid radioactive waste

Search Result 174, Processing Time 0.026 seconds

Measurement of Evaporation Rates for Lanthanum and Neodymium Chlorides

  • Kwon, S.W.;Lee, Y.S.;Jung, J.H.;Chang, J.H.;Kim, S.H.;Lee, S.J.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.10a
    • /
    • pp.74-74
    • /
    • 2017
  • Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. Uranium deposit recovered from the solid cathode is a dendritic powder. It is necessary to separate the adhered salt from the deposits prior to the consolidation of uranium deposit. The adhered salt is composed of lithium, potassium, uranium, and rare earth chlorides. Distillation process was employed for the cathode processing. One of the operation methods is distillation of the salt at low temperature ($900^{\circ}C$), and then melting of the deposit at high temperature to avoid a backward reaction. For the development of the salt distiller, the distillation behavior of the low vapor pressure chlorides should be studied. Rare earth chlorides in the adhered salt of uranium deposits have relatively low vapor pressures compared to the process salt (LiCl-KCl). In this study, the evaporation rates of the lanthanum and neodymium chlorides were measured for the salt separation from electrorefiner uranium deposits in the temperature range of $825{\sim}910^{\circ}C$. The evaporation rate of both chlorides increased with an increasing templerature. The evaporation rate of lanthanum chloride varied from 0.12 to $1.68g/cm^2/h$. Neodymium chloride was more volatile than lanthanum chloride. The evaporation rate of neodymium chloride varied from 0.20 to $4.55g/cm^2/h$. The evaporation rate of both chlorides are more than $1g/cm^2/h$ at $900^{\circ}C$. Even though the evaporation rates of both chlorides were less than that of the process salt, the contents of the lanthanide chlorides were small in the adhered salt. Therefore it can be concluded that $900^{\circ}C$ is suitable for the operation temperature of the salt distiller.

  • PDF

Evaluation of Americium Solubility in Synthesized Groundwater: Geochemical Modeling and Experimental Study at Over-Saturation Conditions

  • Hee-Kyung Kim;Hye-Ryun Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.399-410
    • /
    • 2022
  • The solubility and species distribution of radionuclides in groundwater are essential data for the safety assessment of deep underground spent nuclear fuel (SNF) disposal systems. Americium is a major radionuclide responsible for the long-term radiotoxicity of SNF. In this study, the solubility of americium compounds was evaluated in synthetic groundwater (SynDB3), simulating groundwater from the DB3 site of the KAERI Underground Research Tunnel. Geochemical modeling was performed using the ThermoChimie_11a thermochemical database. Concentration of dissolved Am(III) in Syn-DB3 in the pH range of 6.4-10.5 was experimentally measured under over-saturation conditions by liquid scintillation counting over 70 d. The absorption spectra recorded for the same period suggest that Am(III) colloidal particles formed initially followed by rapid precipitation within 2 d. In the pH range of 7.5-10.5, the concentration of dissolved Am(III) converged to approximately 2×10-7 M over 70 d, which is comparable to that of the amorphous AmCO3OH(am) according to the modeling results. As the samples were aged for 70 d, a slow equilibrium process occurred between the solid and solution phases. There was no indication of transformation of the amorphous phase into the crystalline phase during the observation period.

Development of the Pushing Type Cutting Device to Dismantle Concrete Structure for Decommissioning of Nuclear Power Plant (원전해체 시 콘크리트 구조물 절단을 위한 밀기형 절단장치 개발)

  • Lee, Bong-Jae;Kwon, Yong-Kyu;Hong, Chang-Dong;Lee, Dong-Won;Min, Kyong-Nam
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.103-111
    • /
    • 2020
  • Pulling-type cutting devices, which use a diamond wire saw, have been used generally for cutting concrete structures. In this study, a pushing-type cutting device with a collection cover was developed by overcoming the disadvantages of pulling-type devices. In this device, dry or liquid methods can be selected to cool frictional heat. Operation and leakage tests of the dust generated during the dismantling of a concrete structure were carried out, confirming the suitable operation of the fabricated cutting device; the leakage rate was approximately 1.7%. For a conservative evaluation, the internal dose of workers was estimated in dismantling the core center part of biological shield concrete with a specific activity of 99.5 Bq·g-1. The committed effective dose per worker was 0.25 mSv. The developed cutting device contributed to reducing radioactive concrete waste and minimizing worker exposure due to its easy installation. Therefore, it can be utilized as a cutting apparatus for dismantling not only reinforced concrete structures but also radioactive biological shield concrete in nuclear power plant decommissioning efforts.

The Purification of Decontamination Liquid Waste by Electrosorption (전기적 흡 . 탕착에 의한 제염폐액의 정화처리기술)

  • 정종헌;문제권;김규남;이성호;이상문
    • Resources Recycling
    • /
    • v.8 no.3
    • /
    • pp.18-25
    • /
    • 1999
  • The study on the electrosorption of cobalt ions onto a porous activated carbon fiber (ACF) was performed to treat radioactive liquid wastes resulting from chemical or electrochemical decontamination and to regenerate the spent carbon electrode, Cyclic voltammetry was investigated on a rotating-disk electrode (RDE) to determine the region of potentials within which only double-layer charging should occur. The application of an electric potential increased the sorption of the cobalt ions. The adsorbed cobalt Ions could be released into the solution by reversing the appling potential, showing the reversibility of the process.

  • PDF

Studies on the Sorption and Fixation of Cesium by Vermiculite (II)

  • Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.97-111
    • /
    • 1974
  • The adsorption mechanism of Cs-137 in low level radioactive solution by vermiculite treated with Na ion is studied in order to investigate its effective utilization for the radioactive effluent treatment. The beneficial role of Na-vermiculite is that Na ion can induce the wider c-axis spacing in which Cs ion can be sorbed in vermiculite. Cation exchange capacity and distribution coefficient of cesium seems to be influenced by the variation of c-axis spacing of vermiculite. Comparative identification and detection with the characteristic analyses of X-ray diffraction and electron diffraction patterns, diffrential thermal analysis and electron microscopy of Na-, K- and Cs-vermiculite are studied for the phemomena of Cs adsorption by vermiculite. This importance of the utilization in terms of adsorption and fixation of cesium involving vermiculite is discussed. It is found that the Na-vermiculite is valuable outside charging material for high level radioactive liquid waste storage tank of underground to protect the pollution of the underground water.

  • PDF

Measurement of I-TEDA Removal Rate Using QCM in Supercritical Carbon Dioxide (초임계이산화탄소 하에서 QCM을 이8한 I-TEDA의 제거특성 측정)

  • Yoo, Jae-Ryong;Koh, Moon-Sung;Sung, Jin-Hyun;Lee, Jeong-Ken;Park, Kwang-Heon
    • Clean Technology
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2008
  • The radioactive wastes generated from the nuclear industry can be divided into the forms of solid, liquid, or gas. Radioactive methyl iodide, a gaseous radioactive waste, is absorbed by activated carbon with 5 wt% of Trietylenediamine (1,4-diazania-bicycle[2.2.2]octane, TEDA) impregnated on the surface. Methyl Iodide ($CH_3I$) is combined chemically with TEDA (the final product : I-TEDA). To recycle radioactive activated carbon, removal of I-TEDA from activated carbon is needed. A wet method for recycling impregnated active carbon was developed to remove radioactive I-TEDA using an acetonitrile solution, which produces lots of secondary wastes. We suggest the removal of I-TEDA by supercritical carbon dioxide with co-solvents. In this experiment, we used a quartz crystal microbalance (QCM) for measuring the removal rate of the I-TEDA. From the experimental results, methanol was found to be the optimum co-solvent, and the optimum conditions such as temperature, pressure, and co-solvent flow rate were obtained. Possibility of using supercritical fluid in the removal of I-TEDA from radioactive activated carbon was also discussed.

  • PDF

Residual Liquid Behavior Calculation for Vacuum Distillation of Multi-component Chloride System (다성분 염화물계 진공 증류의 잔류 액체 거동 계산)

  • Park, Byung Heung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.179-189
    • /
    • 2014
  • Pyroprocessing has been developed for the purpose of resolving the current spent nuclear fuel management issue and enhancing the recycle of valuable resources. An electrolytic reduction of the pyroprocessing is a process to reduce oxides into metals using LiCl as an electrolyte and requires a post-treatment process due to the inclusion of residual salt in porous metal products. A vacuum distillation has been adopted for various molten salt systems and could be applied to the post-treatment process of the electrolytic reduction. The residual salt in the metal products includes LiCl, alkali chlorides, and alkaline earth chlorides. In this paper, vapor pressures of chlorides have been estimated and the composition changes on the residual liquid during the vacuum distillation process have been calculated. A model combining a material balance and vapor-liquid equilibrium relations has been proposed under a constant vapor discharging flow rate and liquid composition changes have been calculated using the vapor pressures with respect to a dimensionless time. The behaviors have been compared with temperature and molten salt composition changes to simulate the process condition variation. The distillation of the residual salt has been dominated by LiCl which is the main component of the salt and CsCl of which vapor pressure is higher than that of LiCl would be readily removed. RbCl exhibits similar vapor pressure with LiCl and maintains its composition. However, $SrCl_2$ and $BaCl_2$ of which vapor pressures are much lower than that of LiCl are concentrated with time and expected to be possibly precipitated during the distillation when the initial compositions are increased.

A study on the electrodeposition of uranium using a liquid cadmium cathode at 440℃ and 500℃ (440℃와 500℃에서 액체카드뮴음극을 이용한 우라늄 전착에 관한 연구)

  • Yoon, Jong-Ho;Kim, Si-Hyung;Kim, Gha-Young;Kim, Tack-Jin;Ahn, Do-Hee;Paek, Seungwoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.199-206
    • /
    • 2013
  • Electrowinning process in pyroprocessing recovers U (uranium) and TRU (Trans Uranium) elements simultaneously from spent fuels using a liquid cadmium cathode (LCC). When the solubility limit of U deposits over 2.35wt% in Cd, U dendrites were formed on the LCC surface during the electrodeposition at $500^{\circ}C$. Due to the high surface area of dendritic U, the deposits were not submerged into the liquid cadmium pool but grow out of the LCC crucible. Since the U dendrites act as a solid cathode, it prevents the co-deposition of U and TRUs. In this study, the electrodeposition of U onto a LCC was carried out at 440 and $500^{\circ}C$ to compare the morphology and component of U deposits. The U deposits at $440^{\circ}C$ have a specific shape and were stacked regularly at the center of the LCC pool, while the U dendrites (i.e., ${\alpha}$-phase) at $500^{\circ}C$ were grow out of the LCC crucible. Through the microscopic observation and XRD analysis, the electrodeposits at $440^{\circ}C$, which have a round shape, were identified as an intermetallic compound such as $UCd_{11}$. It can be concluded that the LCC electrowinning operation at $440^{\circ}C$ achieves the co-recovery of U and TRU without the formation of U dendrites.

A Study on the Droplet Formation of Liquid Metal in Water-Mercury System as a Surrogate of Molten Salt-Liquid Metal System at Room Temperature (용융염-액체금속 계의 대용물인 물-수은 계에서 액체금속 액적의 생성에 대한 연구)

  • Kim, Yong-il;Park, Byung Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.165-172
    • /
    • 2018
  • As an approach for estimation of the droplet size in the molten salt-liquid metal extraction process, a droplet formation experiment at room temperature was conducted to evaluate the applicability of the Scheele-Meister model with water-mercury system as a surrogate that is similar to the molten salt-liquid metal system. In the experiment, droplets were formed through the nozzle and the droplet size was measured using a digital camera and image analysis software. As nozzles, commercially available needles with inner diameters (ID) of 0.018 cm and 0.025 cm and self-fabricated nozzles with 3-holes (ID: 0.0135 cm), 4-holes (ID: 0.0135 cm), and 2-holes (ID: 0.0148 cm) were used. The mercury penetration lengths in the nozzles were 1.3 cm for the needles and 0.5 cm for the self-fabricated nozzles. The droplets formed from each nozzle maintained stable spherical shape up to 20 cm below the nozzle. The droplet size measurements were within a 10% error range when compared to the Scheele-Meister model estimates. The experimental results show that the Scheele-Meister model for droplet size estimation can be applied to nozzles that stably form droplets in a water-mercury system.

Oxalate Precipitation of Lanthanide and Actinide in a Simulated Radioactive Liquid Waste (모의 방사성용액에서 란탄족과 악티늄족원소의 옥살산침전)

  • Chung, Dong-Yong;Kim, Eung-Ho;Lee, Eil-Hee;Yoo, Jae-Hyung;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.996-1002
    • /
    • 1999
  • The oxalate precipitation of lanthanide and actinide by oxalic acid was investigated in the simulated radioactive liquid waste, which was composed of 17 elements of alkali, alkaline earth(Cs, Rb, Ba, Sr), transition metal(Zr, Fe, Mo, Ni, Pd, Rh), lanthanide(La, Y, Nd, Ce, Eu) and actinide(Np, Am) in nitric acid solution. The effect of concentrations of nitric acid and ascorbic acid on the precipitation yield of each element in the simulated solution was examined at 0.5 M oxalic acid concentration. The precipitation yields of the elements were usually decreased with nitric acid concentration, nevertheless, the precipitation yields of lanthanide and actinide were more than 99%. Palladium was precipitated due to the reduction of Pd(II) into Pd metal by the addition of ascorbic acid in the oxalate precipitation and then, the precipitation yields of Mo, Fe, Ni, Ba decreased by 10~20% with concentration of ascorbic acid. The reductive precipitation of Pd(II) into Pd metal by the addition of ascorbic acid into the simulated radwaste occurred at below 1 M nitric acid concentration and its yield showed maximum at the ascorbic acid concentration of 0.01~0.02 M. The hydrazine suppressed the reductive precipitation of Pd by the ascorbic acid.

  • PDF