• 제목/요약/키워드: Liquid metals

검색결과 265건 처리시간 0.022초

액상가압공정으로 제조된 STS304와 Ta 섬유 강화 Zr계 비정질 복합재료의 준정적 및 동적 변형거동 (Quasi-Static and Dynamic Deformation Behavior of STS304- and Ta-fiber-reinforced Zr-based Amorphous Matrix Composites Fabricated by Liquid Pressing Process)

  • 김용진;신상용;김진성;허훈;김기종;이성학
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.477-488
    • /
    • 2010
  • Zr-based amorphous alloy matrix composites reinforced with stainless steel (STS) and tantalum continuous fibers were fabricated without pores or defects by a liquid pressing process, and their quasi-static and dynamic deformation behaviors were investigated by using a universal testing machine and a Split Hopkinson pressure bar, respectively. The quasi-static compressive test results indicated that the fiberreinforced composites showed amaximum strength of about 1050~1300 MPa, and its strength maintained over 700 MPa until reaching astrain of 40%. Under dynamic loading, the maximum stresses of the composites were considerably higher than those under quasi-static loading because of the strain-rate hardening effect, whereas the fracture strains were considerably lower than those under quasi-static loading because of the decreased resistance to fracture. The STS-fiber-reinforced composite showed a greater compressive strength and ductility under dynamic loading than the tantalum-fiber-reinforced composite because of the excellent resistance to fracture of STS fibers.

고온, 고압 조건에서 n-dodecane 액체연료의 흡열분해를 위한 관벽 내 알루미나 및 촉매 코팅 최적화 연구 (A Study on Optimization of Alumina and Catalysts Coating on Tube Reactor for Endothermic Reaction of n-Dodecane Under Supercritical Conditions)

  • 김성수;이상문;이예환;이동윤;곽지영
    • 한국추진공학회지
    • /
    • 제25권3호
    • /
    • pp.56-61
    • /
    • 2021
  • 본 연구에서는 극초음속 비행체의 냉각제로 사용되는 액체탄화수소 연료와 흡열 촉매의 안정적 사용을 위해 Al2O3와 H-ZSM-5를 stainless steel tube 내벽에 코팅하는 연구를 수행하였다. 액체탄화수소 연료의 흡열분해 반응에서 coke 생성이 불가피하며, stainless steel tube reactor를 냉각채널로 사용하게 됨에 따라 Fe, Ni 금속이 filamentous coke 생성을 유발한다. 이에 따라 stainless steel에 H-ZSM-5를 코팅함으로써, Fe과 Ni 금속이 액체탄화수소 연료에 직접 노출되는 것을 방지하고 filamentous coke 생성을 억제하고자 하였다. 또한 stainless steel과 H-ZSM-5 사이에는 Al2O3을 코팅하여, 부착 강도를 증진 시키고자 하였다.

액상가압공정으로 제조된 금속 연속섬유강화 비정질 복합재료의 미세파괴거동 (Microfracture Behavior of Metallic-Continuous-Fiber-Reinforced Amorphous Matrix Composites Fabricated by Liquid Pressing Process)

  • 이규홍;이상복;이상관;이성학
    • 대한금속재료학회지
    • /
    • 제46권8호
    • /
    • pp.524-537
    • /
    • 2008
  • Zr-based amorphous alloy matrix composites reinforced with metallic continuous fibers were fabricated by liquid pressing process, and their fracture properties were investigated by directly observing microfracture process using an in situ loading stage installed inside a scanning electron microscope chamber. About 60 vol.% of metallic fibers were homogeneously distributed inside the amorphous matrix. Apparent fracture toughness of the stainless-steel- and tungsten-fiber-reinforced composites was lower than that of monolithic amorphous alloy, while that of the Ta-fiber-reinforced composite was higher. According to the microfracture observation, shear bands or cracks were initiated at the amorphous matrix, and the propagation of the initiated shear bands or cracks was effectively blocked by fibers, thereby resulting in stable crack growth which could be confirmed by the fracture resistance curve (R-curve) behavior. This increase in fracture resistance with increasing crack length improved fracture properties of the fiber-reinforced composites, and could be explained by mechanisms of formation of multiple shear bands or multiple cracks at the amorphous matrix and blocking of crack or shear band propagation and multiple necking at metallic fibers.

텅스텐 다공성폼 강화 Zr계 비정질 기지 복합재료의 미세조직과 기계적 성질 (Microstructure and Mechanical Properties of Amorphous Matrix Composite Reinforced with Tungsten Porous Foam)

  • 손창영;이상복;이상관;김충년;이성학
    • 대한금속재료학회지
    • /
    • 제48권2호
    • /
    • pp.109-115
    • /
    • 2010
  • In the present study, a Zr-based amorphous alloy matrix composite reinforced with tungsten porous foam was fabricated without pores or defects by liquid pressing process, and its microstructures and mechanical properties were investigated. About 69 vol.% of tungsten foam was homogeneously distributed inside the amorphous matrix, although the matrix of the composite contained a small amount of crystalline phases. The compressive test results indicate that the composite was not fractured at one time after reaching the maximum compressive strength, but showed considerable plastic strain as the compressive load was sustained by tungsten foam. The tungsten foam greatly improved the strength (2764 MPa) and ductility (39.4%) of the composite by homogeneously dispersing the stress applied to the matrix. This was because the tungsten foam and matrix were simultaneously deformed without showing anisotropic deformation due to the excellent bonding of tungsten/matrix interfaces. These findings suggest that the liquid pressing process is useful for the development of amorphous matrix composites with improved strength and ductility.

갈륨 및 갈륨 합금을 이용한 저온접합 기술 동향 (Trends of Low-temperature Bonding Technologies using Gallium and Gallium Alloys)

  • 홍태영;심호률;손윤철
    • 마이크로전자및패키징학회지
    • /
    • 제29권2호
    • /
    • pp.11-18
    • /
    • 2022
  • 최근 세계적으로 유연 전자소자 관련 기술들이 주목을 받으면서 유연소자 제작 과정에서의 성형성 및 굽힘 상태에서의 성능과 내구성 등의 문제점을 개선하기 위하여 액체 금속을 사용한 배선·접합 기술들의 개발이 요구되고 있다. 이러한 요구에 부응하여 독성이 없으면서 낮은 점도와 우수한 전기전도도를 가지는 갈륨 및 갈륨계 합금 (공정 갈륨-인듐 및 공정 갈륨-인듐-주석 등)의 액체금속을 저온 접합소재로 이용하려는 다양한 연구들이 이루어지고 있다. 본 논문에서는 갈륨 및 갈륨계 합금을 이용한 저온접합 기술의 최신 연구동향을 정리하여 소개하고자 한다. 이러한 기술들은 향후 유연 전자소자의 제조 및 전자패키지에서의 저온접합 등의 분야에서 실용화를 위한 중요한 기반기술이 될 것으로 예상된다.

아연 또는 비소와 경유로 오염된 토양의 복합정화공법 개발 (Development of Hybrid Remediation Method for Contaminated Soils with Zinc or Arsenic and Diesel)

  • 김혜영;박정훈
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권4호
    • /
    • pp.13-20
    • /
    • 2010
  • The purpose of this study was to develope the remediation method of contaminated soils with metals and petroleum. The diesel degrading strain was isolated and identified from the soil contaminated by petroleum at industrial sites. Diesel biodegradation experiment was performed by diesel degrading bacteria in both solution and soil slurry. Contaminated soils by Zn or As and diesel were treated consecutively by steam-vapor extraction, biodegradation, and acid washing. The strain was identified as Pseudomonas aeruginosa, and named as Pseudomonas aeruginosa TPH1. The optimal culture conditions of TPH1 were $20^{\circ}C$ and pH 7.0, 3% of diesel concentration. Biodegradation of diesel was performed using the separated strain in liquid medium, and 63% of diesel was degraded in 72 hours. And 52% of diesel was removed in the tested soils. In the treatment of contaminated soils with diesel and Zn or As, 29% ~ 44% of diesel was reduced by steamvapor extraction, 60% ~ 71% of diesel was removed after biodegradation. 47% of Zn and 96% of As were removed after acid(mixture of sulfuric and oxalic acids) washing. It is recommended that consecutive treatment method of steam-vapor extraction, biodegradation and acid washing is effective for remediation of complex contaminated soils with metals and petroleum.

온도와 접촉금속이 Tricyclodecane의 열안정성에 미치는 영향 (Effect of Temperature and Contact Metals on the Thermal Stability of Tricyclodecane)

  • 박선희;김중연;전병희;권정훈;강정원;한정식;정병훈;남궁혁준;김성현
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.159-162
    • /
    • 2009
  • 온도가 조절되는 회분식 반응기에서 온도와 접촉금속이 Exo-tricyclo[$5.2.1.0^{2,6}$]decane (tricyclodecane, 이하 exo-THDCP로 표기함)의 열안정도에 미치는 영향을 GC/MS로 조사하였다. 그리고 Exo-THDCP와 접촉하는 금속의 특성은 SEM-EDX로 분석하였다. 보관 연료온도 증가 실험에서 exo-THDCP의 분해는 $350^{\circ}C$에서 시작되는 것으로 밝혀졌다. 연료접촉 금속의 경우, 스테인리스 스틸보다 티타늄이 exo-THDCP의 분해에 미치는 영향이 작은 것으로 나타났다.

  • PDF

Corrosion behavior of refractory metals in liquid lead at 1000 ℃ for 1000 h

  • Xiao, Zunqi;Liu, Jing;Jiang, Zhizhong;Luo, Lin
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.1954-1961
    • /
    • 2022
  • Lead-based fast reactor (LFR) has become one of the most promising reactors for Generation IV nuclear systems. A developing trend of LFR is high efficiency, along with operation temperatures up to 800 ℃ or even higher. One of key issues in the high-efficiency LFR is corrosion of cladding materials with lead at high temperatures. In this study, corrosion behavior of some refractory metals (Nb, Nb521, and Mo-0.5La) was investigated in static lead at 1000 ℃ for 1000 h. The results showed that Nb and Nb521 exhibited an intense dissolution corrosion with obvious lead penetration after corrosion, and lead penetration extended along the grain boundaries of the specimens. Furthermore, Nb521 showed a better corrosion resistance than that of Nb as a result of the elements of W and Mo included in Nb521. Mo-0.5La showed much better corrosion resistance than that of Nb and Nb521, and no lead penetration could be observed. However, an etched morphology appeared on the surface of Mo-0.5La, indicating the occurrence of corrosion to a certain degree. The results indicate that Mo-0.5La is compatible with lead up to 1000 ℃. While Nb and Nb alloys might be not compatible with lead for high-efficiency LFR at such high temperatures.

갈륨에 기초한 액체금속 X밴드 레이더 반사신호 측정 (X-band RADAR Reflected Signal Measurement of Gallium-based Liquid Metal)

  • 김민혁;강세혁;두석주;김대영
    • 한국군사과학기술학회지
    • /
    • 제26권3호
    • /
    • pp.246-251
    • /
    • 2023
  • RADAR(Radio Detection and Ranging) is an important system for surveillance and reconnaissance by detecting a reflected signal which obtains the range from the radar to the target, and the velocity of the target. The magnitude of the reflected signal varies due to the radar cross section of the target, characteristic of the transmission and reception antenna, distance between the radar and the target, and power and wavelength of the transmitted signal. Thus, the RCS is the important characteristic of the target to determine if the target can be observed by the RADAR system. It is based on the material and shape of the target. We have measured the reflection signal of a simple square-shaped (20 × 20 cm) target made of a new material, a gallium-based liquid metal alloy and compared that of well-known metals including copper, aluminum. The magnitude of reflected signal of the aluminum target was the largest and it was 2.4 times larger than that of the liquid metal target. We also investigated the effect of the shape by measuring reflectance of the F-22 3D model(~1/95 ratio) target covered with/without copper, aluminium, and liquid metal. The largest magnitude of the reflected signal measured from side-view with the copper-covered F-22 model was 2.6 times greater than that of liquid metal. The reflectance study of the liquid metal would be helpful for liquid metal-based frequency selective surface or metamaterials.

액체로켓엔진 노즐확장부 소재기술 동향 (Material Trends of Nozzle Extension for Liquid Rocket Engine)

  • 이금오;유철성;최환석
    • 항공우주산업기술동향
    • /
    • 제9권1호
    • /
    • pp.139-149
    • /
    • 2011
  • 액체 로켓 엔진의 연소기는 높은 온도의 연소가스를 발생시키므로 연소실과 노즐은 열적으로 보호되어야 한다. 고공 엔진의 노즐확장부도 고열에 견딜 수 있게 설계되어야 하며, 이를 위하여 가스냉각, 삭마냉각, 복사냉각등 다양한 방법의 냉각이 적용되고 있다. 특히 큰 노즐 팽창비를 갖는 상단엔진의 경우 무게가 발사체 성능에 미치는 영향이 크므로 경량 내열 소재가 개발되어 사용되어 왔다. 미국과 러시아, 유럽에서 사용되어 온 노즐확장부 재료를 조사한 결과 스테인리스강과 티타늄합금과 같은 무거운 금속 재료에서 경량의 탄소섬유 강화 복합재 또는 세라믹 복합재로 바뀌어 가는 경향이 파악되었다.

  • PDF