• 제목/요약/키워드: Liquid lead-bismuth

검색결과 23건 처리시간 0.02초

Numerical simulation of three-dimensional flow and heat transfer characteristics of liquid lead-bismuth

  • He, Shaopeng;Wang, Mingjun;Zhang, Jing;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1834-1845
    • /
    • 2021
  • Liquid lead-bismuth cooled fast reactor is one of the most promising reactor types among the fourth-generation nuclear energy systems. The flow and heat transfer characteristics of lead-bismuth eutectic (LBE) are completely different from ordinary fluids due to its special thermal properties, causing that the traditional Reynolds analogy is no longer recommended and appropriate. More accurate turbulence flow and heat transfer model for the liquid metal lead-bismuth should be developed and applied in CFD simulation. In this paper, a specific CFD solver for simulating the flow and heat transfer of liquid lead-bismuth based on the k - 𝜀 - k𝜃 - 𝜀𝜃 model was developed based on the open source platform OpenFOAM. Then the advantage of proposed model was demonstrated and validated against a set of experimental data. Finally, the simulation of LBE turbulent flow and heat transfer in a 7-pin wire-wrapped rod bundle with the k - 𝜀 - k𝜃 - 𝜀𝜃 model was carried out. The influence of wire on the flow and heat transfer characteristics and the three-dimensional distribution of key thermal hydraulic parameters such as temperature, cross-flow velocity and Nusselt number were studied and presented. Compared with the traditional SED model with a constant Prt = 1.5 or 2.0, the k - 𝜀 - k𝜃 - 𝜀𝜃 model is more accurate on predicting the turbulence flow and heat transfer of liquid lead-bismuth. The average relative error of the k - 𝜀 - k𝜃 - 𝜀𝜃 model is reduced by 11.1% at most under the simulation conditions in this paper. This work is meaningful for the thermal hydraulic analysis and structure design of fuel assembly in the liquid lead-bismuth cooled fast reactor.

Numerical analysis of the venturi flowmeter in the liquid lead-bismuth eutectic circuit after long-term operation

  • Zhichao Zhang;Rafael Macian-Juan;Xiang Wang
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1081-1090
    • /
    • 2024
  • The liquid Lead-bismuth eutectic is used as the coolant for Gen-IV reactor concepts. However, due to its strong corrosive and high operating temperature, it is difficult to accurately measure the flow rate in long-term operating conditions. Venturi flowmeter is a simple structured flowmeter, which plays a very important role in the flow measurement of high-temperature liquid metals, especially since the existing flowmeters are difficult to be competent. It has the advantages of easy maintenance and stable operation. Therefore, it is necessary to study the operating conditions of the venturi flowmeter under high-temperature conditions. This work performs a series of simulations of the fluid-solid interaction between the flow liquid metal and venturi flowmeter with COMSOL software, including the dimensional sensitivity analysis of the venturi flowmeter to explore the most suitable structure and parameters for liquid heavy metal, the sensitivity analysis of the geometric parameters of the venturi tube on the varying conditions. It shows that when the contraction angle of the venturi flowmeter is 33°, the diffusion angle is 13°, the diameter of the throat is 8 mm, and the temperature of the lead-bismuth eutectic is 733.15 K, it is most suitable for the measurement in the lead-bismuth circuit.

Development and validation of the lead-bismuth cooled reactor system code based on a fully implicit homogeneous flow model

  • Ge Li;Wang Jingxin;Fan Kun;Zhang Jie;Shan Jianqiang
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1213-1224
    • /
    • 2024
  • The liquid lead-bismuth cooled fast reactor has been in a single-phase, low-pressure, and high-temperature state for a long time during operation. Considering the requirement of calculation efficiency for long-term transient accident calculation, based on a homogeneous hydrodynamic model, one-dimensional heat conduction model, coolant flow and heat transfer model, neutron kinetics model, coolant and material properties model, this study used the fully implicit difference scheme algorithm of the convection-diffusion term to solve the basic conservation equation, to develop the transient analysis program NUSOL-LMR 2.0 for the lead-bismuth fast reactor system. The steady-state and typical design basis accidents (including reactivity introduction, loss of flow caused by main pump idling, excessive cooling, and plant power outage accidents) for the ABR have been analyzed. The results are compared with the international system analysis software ATHENA. The results indicate that the developed program can stably, accurately, and efficiently predict the transient accident response and safety characteristics of the lead-bismuth fast reactor system.

A novel monitoring system for fatigue crack length of compact tensile specimen in liquid lead-bismuth eutectic

  • Baoquan Xue;Jibo Tan;Xinqiang Wu;Ziyu Zhang;Xiang Wang
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1887-1894
    • /
    • 2024
  • Fatigue strength of the structural materials of lead-cooled fast reactors (LFRs) and accelerator-driven systems (ADS) may be degraded in liquid metal (Lead or lead-bismuth eutectic (LBE)) environments. The fatigue crack growth (FCG) data of structural materials in liquid LBE are necessary for damage tolerance design, safety assessment and life management of key equipment. A novel monitoring system for fatigue crack length was designed on the compliance method and the monitor technology of crack opening displacement (COD) of CT specimens by the linear variable differential transformers (LVDT) system. It can be used to predict the crack length by monitoring the COD of CT specimens in harsh high-temperature liquid LBE using a LVDT system. The prediction accuracy of this system was verified by FCG experiments in room temperature air and liquid LBE at 150, 250 and 350 ℃. The first results obtained in the FCG test for T91 steel in liquid LBE at 350 ℃ are presented.

Liquid Delivery MOCVD로 증착된 강유전체 BDT 박막의 피로 특성 향상 (Improvement of Fatigue Properties in Ferroelectric Dy-Doped Bismuth Titanate(BDT) Thin Films Deposited by Liquid Delivery MOCVD System)

  • 강동균;박윈태;김병호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.171-171
    • /
    • 2007
  • Dysprosium-doped bismuth titanate (BDT) thin films were successfully deposited on Pt(111)/Ti/$SiO_2$/Si(100) substrates by liquid delivery MOCVD process and their structural and ferroelectric properties were characterized. Fabricated BDT thin films were found to be random orientations, which were confirmed by X-ray diffraction experiment and scanning electron microscope analysis. The crystallinity of the BDT films was improved and the average grain size increased as the crystallization temperature increased from 600 to $720^{\circ}C$ at an interval of $40^{\circ}C$. The BDT thin film annealed at $720^{\circ}C$ showed a large remanent polarization (2Pr) of $52.27\;{\mu}C/cm^2$ at an applied voltage of 5V. The BDT thin film exhibits a good fatigue resistance up to $1.0{\times}10^{11}$ switching cycles at a frequency of 1 MHz with applied pulse of ${\pm}5\;V$. These results indicate that the randomly oriented BDT thin film is a promising candidate among ferroelectric materials useti비 in lead-free nonvolatile ferroelectric random access memory applications.

  • PDF

Experimental Investigation of the Thermal Hydraulics in Lead Bismuth Eutectic-Helium Experimental Loop of an Accelerator-Driven System

  • Xi, Wenxuan;Wang, Yongwei;Li, Xunfeng;Huai, Xiulan;Cai, Jun
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1154-1161
    • /
    • 2016
  • The heat transfer characteristics between liquid lead bismuth eutectic (LBE) and helium are of great significance for the two-loop cooling system based on an accelerator-driven system (ADS). This paper presents an experimental study on the resistance characteristics and heat transfer performance in a LBE-helium experimental loop of ADS. Pressure drops in the LBE loop, the main heat transfer, and the coupled heat transfer characteristics between LBE and helium are investigated experimentally. The temperature of LBE has a significant effect on the LBE thermo-physical properties, and is therefore considered in the prediction of pressure drops. The results show that the overall heat transfer coefficient increases with the increasing helium flow rate and the decreasing inlet temperature of helium. Increasing the LBE Reynolds number and LBE inlet temperature promotes the heat transfer performance of main heat transfer and thus the overall heat transfer coefficient. The experimental results give an insight into the flow and heat transfer properties in a LBE-helium heat exchanger and are helpful for the optimization of an ADS system design.

Preliminary Corrosion Model in Isothermal Pb and LBE Flow Loops

  • Lee, Sung Ho;Cho, Choon Ho;Song, Tae Yung
    • Corrosion Science and Technology
    • /
    • 제5권6호
    • /
    • pp.201-205
    • /
    • 2006
  • HYPER(Hybrid Power Extraction Reactor) is the accelerator driven subcritical transmutation system developed by KAERI(Korea Atomic Research Institute). HYPER is designed to transmute long-lived transuranic actinides and fission products such as Tc-99 and I-129. Liquid lead-bismuth eutectic (LBE). Has been a primary candidate for coolant and spallation neutron target due to its appropriate thermal-physical and chemical properties, However, it is very corrosive to the common steels used in nuclear installations at high temperature. This corrosion problem is one of the main factors considered to set the upper limits of temperature and velocity of HYPER system. In this study, a parametric study for a corrosion model was performed. And a preliminary corrosion model was also developed to predict the corrosion rate in isothermal Pb and LBE flow loops.

熔融 Pb-Bi, Pb-Na, Bi-Na 및 Pb-Bi-Na 系의 物理化學的硏究 (Thermodynamic Study of Liquid Pb-Bi, Pb-Na, Bi-Na Binaries and Pb-Bi-Na Ternary Solutions)

  • 고창식
    • 대한화학회지
    • /
    • 제6권2호
    • /
    • pp.133-142
    • /
    • 1962
  • This study was carried out to investigate the lead-bismuth-sodium ternary system which a basis of the Dittmer method as a part of "the fundamental study of pyrometallurgical debismuthizing of lead". Thermodynamic properties of each liquid Pb-Bi, Pb-Na binaries as well as liquid Pb-Bi-Na ternary solution were measured by e.m.f. of these concentration cells, and those of each component were also determined. Furthermore, iso-activity lines including Pb rich side composition of Pb-Bi-Na ternary solution were determined. The relationship between those thermodynamic characteristics and tendency of intermetallic compound formation was discussed through the above experiments.

  • PDF

Simulation of oxygen mass transfer in fuel assemblies under flowing lead-bismuth eutectic

  • Feng, Wenpei;Zhang, Xue;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.908-917
    • /
    • 2020
  • Corrosion of structural materials presents a critical challenge in the use of lead-bismuth eutectic (LBE) as a nuclear coolant in an accelerator-driven system. By forming a protective layer on the steel surfaces, corrosion of steels in LBE cooled reactors can be mitigated. The amount of oxygen concentration required to create a continuous and stable oxide layer on steel surfaces is related to the oxidation process. So far, there is no oxidation experiment in fuel assemblies (FA), let alone specific oxidation detail information. This information can be, however, obtained by numerical simulation. In the present study, a new coupling method is developed to implement a coupling between the oxygen mass transfer model and the commercial computational fluid dynamics (CFD) software ANSYS-CFX. The coupling approach is verified. Using the coupling tool, we study the oxidation process of the FA and investigate the effects of different inlet parameters, such as temperature, flow rate on the mass transfer process.

Numerical study of oxygen transport characteristics in lead-bismuth eutectic for gas-phase oxygen control

  • Wang, Chenglong;Zhang, Yan;Zhang, Dalin;Lan, Zhike;Tian, Wenxi;Su, Guanghui;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2221-2228
    • /
    • 2021
  • One-dimensional oxygen transport relation is indispensable to study the oxygen distribution in the LBE-cooled system with an oxygen control device. In this paper, a numerical research is carried out to study the oxygen transport characteristics in a gas-phase oxygen control device, including the static case and dynamic case. The model of static oxygen control is based on the two-phase VOF model and the results agree well with the theoretical expectation. The model of dynamic oxygen control is simplified and the gas-liquid interface is treated as a free surface boundary with a constant oxygen concentration. The influences of the inlet and interface oxygen concentration, mass flow rate, temperature, and the inlet pipe location on the mass transfer characteristics are discussed. Based on the results, an oxygen mass transport relation considering the temperature dependence and velocity dependence separately is obtained. The relation can be used in a one-dimensional system analysis code to predict the oxygen provided by the oxygen control device, which is an important part of the integral oxygen mass transfer models.