• Title/Summary/Keyword: Liquid laser material

Search Result 54, Processing Time 0.023 seconds

ZnO Nanowires Fabricated by Pulsed Laser Deposition using Gold Catalyst (PLD-Furnace로 증착시킨 금촉매를 이용한 ZnO 나노와이어 합성)

  • Son, Hyo-Jeong;Jeon, Kyung-Ah;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.5-6
    • /
    • 2005
  • ZnO nanowlres (NWs) were fabricated using Au as catalyst for a method combining laser ablation cluster formation and vapor-liquid-solid (VLS) growth. The target used in synthesis was pure ZnO ceramics. Two different substrates were used; (0001)-oriented sapphires and Au-coated sapphires. The Au thin film was deposited by thermal evaporation and the thickness was about 50 ${\AA}$. ZnO NWs were only formed in case of that used catalyst metal. Field effect scanning electron microscopic (FESEM) investigation showed that the average diameter of ZnO NWs was about 70 nm and the typical lengths varied from $3{\sim}4{\mu}m$.

  • PDF

Detection of Small Neutral Carbohydrates Using Various Supporting Materials in Laser Desorption/Ionization Mass Spectrometry

  • Yang, Hyo-Jik;Lee, Ae-Ra;Lee, Myung-Ki;Kim, Woong;Kim, Jeong-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.35-40
    • /
    • 2010
  • A comprehensive comparative investigation of small carbohydrates in laser desorption ionization was performed on supporting materials composed of sodiated 2,5-dihydroxybenzoic acid (DHB), carbon nanotubes, an ionic liquid matrix of DHB-pyridine, a binary matrix of DHB-aminopyrazine, zinc oxide nanoparticles, and gold nanoparticles. The abundance of $[M+Na]^+$ ions, where M is glucose or sucrose, was compared for each supporting material. The highest sensitivity for both glucose and sucrose, with a detection limit of 3 pmol, was observed with carbon nanotubes. Both carbon nanotubes and the ionic liquid matrix exhibited the highest reproducibility.

Fabrication of Patchable Organic Lasing Sheets via Soft Lithography

  • Kim, Ju-Hyung
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.203-207
    • /
    • 2016
  • Here, we report a novel fabrication technique for patchable organic lasing sheet based on non-volatile liquid organic semiconductors and freestanding polymeric film with high flexibility and patchability. For this work, we have fabricated the second-order DFB grating structure, which leads to surface emission, embedded in the freestanding polymeric film. Using an ultra-violet (UV) curable polyurethaneacrylate (PUA) mixture, the periodic DFB grating structure can be easily prepared on the freestanding polymeric film via a simple UV curing process. Due to unsaturated acrylate remained in the PUA mixture after UV curing, the freestanding PUA film provides adhesive properties, which enable mounting of the patchable organic lasing sheet onto non-flat surfaces with conformal contact. To achieve laser actions in the freestanding resonator structure, a composite material of liquid 9-(2-ethylhexyl)carbazole (EHCz) and organic laser dyes was used as the laser medium. Since the degraded active materials can be easily refreshed by a simple injection of the liquid composite, such a non-volatile liquid organic semiconducting medium has degradation-free and recyclable characteristics in addition to other strong advantages including tunable optoelectronic responses, solvent-free processing, and ultimate mechanical flexibility and uniformity. Lasing properties of the patchable organic lasing sheet were also investigated after mounting onto non-flat surfaces, showing a mechanical tunability of laser emission under variable surface curvature. It is anticipated that these results will be applied to the development of various patchable optoelectronic applications for light-emitting displays, sensors and data communications.

Lasing Characteristics of Dye-Doped Cholesteric Liquid Crystal

  • Porov, Preeti;Chandel, Vishal Singh;Manohar, Rajiv
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.117-123
    • /
    • 2015
  • Cholesteric liquid crystals are one dimensional photonic band-gap materials due to their birefringence and periodic structure. Dye doped cholesteric liquid crystals are self-assembling, mirror-less, low threshold laser structures that exhibit distributed feedback. In this review paper, we have presented the development in the field of lasing characteristics of dye doped cholesteric liquid crystals.

Fabrication of the Liquid Analyzer us ing Micro-stereolithography Technology (Micro-stereolithography 기술을 이용한 용액분석 소자 제작)

  • 이영태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.994-1000
    • /
    • 2001
  • In this paper, using micro-stereolithography technology, I fabricated a liquid analyzer to measure ion concentration of a solution. Micro-stereolithography is a technology to fabricate 3-dimensional structure by applying laser beam on liquid photo-polymer. This technology makes it possible to do preassemble fabrication without any extra assembling step after the process. So, the liquid analyzer could be fabricated at very low cost with very simple process by micro-stereolithography technology. The liquid analyzer consists of a chamber for containing the solution, a pump using piezoelectric effect of PZT disk, a static mixer and a sensor for measuring ion concentration using Pt electrodes.

  • PDF

Investigation of the Properties of Laser-Welded Amorphous Metal in a Deep Frozen Environment (극저온 환경하에서 레이저 용접된 비결정질 재료의 특성에 관한 연구)

  • 이건상
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.99-108
    • /
    • 1997
  • For the conventional welding method, the high heat transfer makes the crystallization of the work material unavoidable. Whereas the laser is able to weld the amorphous metal without a crystallized zone, because heat transfer is limited withn a very small restricted volume. In this paper, the possibilities and the limits of the laser welding in a deep frozen environment by liquid nitrogen were studied to utilize the advantageous properties of amorphous metal foils. The author investigated, after laser welding in a deep frozen environment with a solid state laser (Nd:YAG-laser), the achievable strengths and the influences of the laser beam parameters on the strengths.

  • PDF

Comparison study of nanosecond laser induced wet and dry ablation of PMMA (나노초 레이저를 이용한 PMMA의 습식 및 건식어블레이션 비교 연구)

  • lee, Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.243-250
    • /
    • 2019
  • The nanosecond laser assisted ablation have been investigated. The biocompatable polymer PMMA was employed as the target material and the two distinctive surface conditions were test. The first surface condition is a dry surface for which the target surface is exposed to air and the second surface condition is the wet surface for which the target surface is covered with dehydrated water. The ablation volume, the laser induced acoustic wave, the laser induced plasma were investigated for both wet and dry condition. The nanosecond laser pulse ablatied more on the wet surface compared to the dry surface. The enhanced ablation of wet surface is attributed to the confined acoustic wave and the laser-induced plasma in the liquid layer.

A Study on the Liquid Crystal Orientation Characteristics of the Inorganic NiOx Film with Aligned Nanopattern Using Imprinting Process (무기막 NiOx의 정렬 패턴 전사를 이용한 액정의 배향 특성 연구)

  • Oh, Byeong-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.357-360
    • /
    • 2019
  • We demonstrate an alignment technology using an imprinting process on an inorganic NiOx film. The aligned nanopattern was fabricated on a silicon wafer by laser interference lithography. The aligned nano pattern was then imprinted onto the sol-gel driven NiOx film using an imprinting process at an annealing temperature of $150^{\circ}C$. After the imprinting process, parallel grooves had been formed on the NiOx film. Atomic force microscopy and water contact angle measurements were performed to confirm the parallel groove on the NiOx film. The grooves caused liquid crystal alignment through geometric restriction, similar to grooves formed by the rubbing process on polyimide. The liquid crystal cell exhibited a pretilt angle of $0.2^{\circ}$, which demonstrated homogeneous alignment.

Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry (Michelson 간섭계를 응용한 미세 상변화 현상 계측)

  • Kim, Dong-Sik;Park, Hee-K.;Grigoropoulos, Costas P.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.348-353
    • /
    • 2001
  • Experimental schemes that enable characterization of phase-change phenomena in the micro scale regime is essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing applications, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse (${\lambda}=248nm,\;FWHM=24\;ns$) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of $0.1{\mu}m\;and\;1\;m/s$, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.

  • PDF