• Title/Summary/Keyword: Liquid in a tank

Search Result 455, Processing Time 0.024 seconds

Free Vibration Analysis of Aboveground LNG-Storage Tanks by the Finite Element Method

  • Cho, Jin-Rae;Lee, Jin-Kyu;Song, Jeong-Mok;Park, Suk-Ho;Lee, Joong-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.633-644
    • /
    • 2000
  • Recently, in proportion to the increase of earthquake occurrence-frequency and its strength in the countries within the circum-pan Pacific earthquake belt, a concept of earthquake-proof design for huge structures containing liquid has been growing up. This study deals with the refinement of classical numerical approaches for the free vibration analysis of separated structure and liquid motions. According to the liquid-structure interaction, LNG-storage tanks exhibit two distinguished eigenmodes, the sloshing mode and the bulging mode. For the sloshing -mode analysis, we refine the classical rigid-tank model by reflecting the container flexibility. While, for the bulging-mode analysis, we refine the classical uncoupled structural vibration system by taking the liquid free-surface fluctuation into consideration. We first construct the refined dynamic models for both problems, and present the refined numerical procedures. Furthermore, in order for the efficient treatment of large-scale matrices, we employ the Lanczos iteration scheme and the frontal-solver for our test FEM program. With the developed program we carry out numerical experiments illustrating the theoretical results.

  • PDF

A Study on the Improvement of Microcrack Resistance of Carbon/Epoxy Composites at Cryogenic Temperature (극저온에서 탄소 섬유/에폭시 복합재료의 군열 저항성 향상에 관한 연구)

  • Hong, Joong-Sik;Kim, Myung-Gon;Kim, Chun-Gon;Kong, Cheol-Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.49-52
    • /
    • 2005
  • In the development of a propellant tank using liquid oxygen and liquid hydrogen, the improvement of microcrack resistance of carbon/epoxy composites is necessary for the application of a composite material to tank structures. In this research, two types of carbon/epoxy composites with different matrix systems were tested to measure interlaminar shear strength (ILSS), one of the material properties to evaluate fiber-matrix interface adhesion indirectly. Short beam specimens were tested inside an environmental chamber at room temperature(RT) and at cryogenic temperature( - 150 $^{\circ}C$) respectively. Results showed that the matrix system with large amount of bisphenol-A and CTBN modified rubber had good performance at cryogenic temperature.

  • PDF

Effect of natural frequency modes on sloshing phenomenon in a rectangular tank

  • Jung, Jae Hwan;Yoon, Hyun Sik;Lee, Chang Yeol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.580-594
    • /
    • 2015
  • Liquid sloshing in two-dimensional (2-D) and three-dimensional (3-D) rectangular tanks is simulated by using a level set method based on the finite volume method. In order to examine the effect of natural frequency modes on liquid sloshing, we considered a wide range of frequency ratios ($0.5{\leq}fr{\leq}3.2$). The frequency ratio is defined by the ratio of the excitation frequency to the natural frequency of the fluid, and covers natural frequency modes from 1 to 5. When fr = 1, which corresponds to the first mode of the natural frequency, strong liquid sloshing reveals roof impact, and significant forces are generated by the liquid in the tank. The liquid flows are mainly unidirectional. Thus, the strong bulk motion of the fluid contributes to a higher elevation of the free surface. However, at fr = 2, the sloshing is considerably suppressed, resulting in a calm wave with relatively lower elevation of the free surface, since the waves undergo destructive interference. At fr = 2, the lower peak of the free surface elevation occurs. At higher modes of $fr_3$, $fr_4$, and $fr_5$, the free surface reveals irregular deformation with nonlinear waves in every case. However, the deformation of the free surface becomes weaker at higher natural frequency modes. Finally, 3-D simulations confirm our 2-D results.

Dynamic Behavior of Liquid Propellant in Reusable Rocket Vehicle

  • Himeno, Takehiro;Nonaka, Satoshi;Naruo, Yoshihiro;Inatani, Yoshifumi;Watanabe, Toshinori
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.687-692
    • /
    • 2004
  • For the prediction of sloshing in the propellant tank of rocket vehicle utilized in RVT (reusable rocket vehicle testing) conducted by ISAS/JAXA, the flow field in the propellant tank during the ballistic flight was experimentally reproduced with the sub-scale model of it. The lateral acceleration as large as about 0.8 G was provided with a mechanical exciter and the deformation of liquid surface in the vessel was visualized with a high-speed camera. The several con-figurations of damping devices were installed and tested in the vessel, which should keep the ullage gas away from the outlet port. It was consequently suggested that the combination of a baffle plate and a perforated cylinder could be effective against the gas suction before the re-ignition of the engine. The sloshing phenomena were also simulated with the CFD code, called CIP-LSM. The numerical results showed good agreement with the corresponding data obtained in the experiment.

  • PDF

Case Study on Seepage Analysis and Countermeasure Against the Seepage Flow of In-ground LNG Storage Tank (LNG 지하저장탱크의 침투해석 및 용수 대책공법에 대한 사례분석)

  • 신은철;오영인;이상혁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.65-72
    • /
    • 2001
  • Since Pyoungtaek thermal power plant began using natural gas in 1986, the annual using volume has rapidly increased and reached 12.7 million tons in 1999. When the natural gas is cooled to a temperature of approximately -162$^{\circ}$C at atmospheric pressure, it condenses to a liquid called liquefied natural gas(LNG). LNG has a special characters such as odorless, colorless, non-corrosive, and non-toxic. So, LNG storage tank, tanker ship, transfer pipelines are required the special storage and transportation systems and technology. The presently operating LNG terminals are Pyongtaek and Inchon terminals. A total of 19 above-ground LNG storage tanks(100 thousand ㎘ grade) are currently in operation with a sendout capacity of 4,360tons/hour. To meet the growing domestic demand of LNG supply, the Inchon receiving terminal is expanding(six in-ground tank) and constructing a third LNG terminal at Tongyong. In this paper, case study on seepage analysis and countermeasure against increasing the seepage volume of in-ground LNG storage tank excavation work is reported. The results of an additional seepage analysis are presented to verify the design seepage volume of assumption section and seepage volume after curtain-grouting in the slurry wall.

  • PDF

A Study on the Effect of Evaporation of Liquid Hydrogen Tank Related to Horizontal Sinewave (액화수소 저장탱크의 수평요동이 증발 특성에 미치는 영향에 대한 연구)

  • SEUNG JUN OH;JUN YEONG KWON;JEONG HWAN YOON
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.155-161
    • /
    • 2023
  • Recently, a study on alternative and renewable energy is being conducted due to energy depletion and environmental problems. In particular, a hydrogen has the advantage of converting and storing the remaining energy into water-electrolyzed hydrogen through renewable energy generation. In general, due to reasons such as insulation problems, a study on high-pressure hydrogen storage tanks and related parts has recently been conducted. However, in the case of liquid hydrogen, the volume can be reduced by about 800 times or more compared to high-pressure hydrogen gas, so the study on this is needed as a technology that can increase energy density. In this study, the evaporation characteristics were analyzed under fixed heat flux conditions for liquid hydrogen storage tanks and the change in thermal stratification according to sloshing was analyzed. The heat flux condition was fixed at 250 W/m2 and the horizontal resonance frequency of the primary mode was applied to the storage tank. As a result, it was confirmed that the thermal stratification phenomenon decreased compared to the case where the slashing was not present due to forced convection when the slashing was present.

Comparison of elastic buckling loads for liquid storage tanks

  • Mirfakhraei, P.;Redekop, D.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.161-170
    • /
    • 2002
  • The problem of the elastic buckling of a cylindrical liquid-storage tank subject to horizontal earthquake loading is considered. An equivalent static loading is used to represent the dynamic effect. A theoretical solution based on the nonlinear Fl$\ddot{u}$gge shell equations is developed, and numerical results are found using the new differential quadrature method. A second solution is obtained using the finite element package ADINA. A major motivation of the study was to show that the new method can serve to verify finite element solutions for cylindrical shell buckling problems. For this purpose the paper concludes with a comparison of buckling results for a number of cases covering a wide range in tank geometry.

Analytical Study on Strength Safety of LPG Mini Tank with Column for Level Gauge (레벨게이지용 컬럼을 설치한 LPG 미니탱크의 강도안전성에 관한 해석적 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.46-50
    • /
    • 2019
  • In this study, the strength stability of an LPG mini tank with a storage capacity of about 250 kg was analyzed by FEM. According to the results of the FEM analysis, it is preferable that the corner radius of the LPG mini tank having a storage capacity of 250 kg is designed to be 175 to 205 mm. Generally, the larger the corner radius of the end plate of the gas storage tank, the higher the safety of the strength, but the volume or capacity of the tank is reduced. Therefore, it is important to derive the optimum design data. Further, in order to securely design the strength of the gas tank, the thickness of the tank is designed to be thick. However, when the thick steel sheet is used, the material and the transportation costs are increased. The result shows that it is preferable to select the optimum thickness of the steel sheet from 4.5 to 5.5 mm. Using the level gauge type of column on the central axis of the gas tank, the safety strength of the LPG tank can be enhanced as much as twice, compared with the tank of the existing level gauge to measure the liquid level by piercing the side wall of the tank.

Performance Test of an Oxidizer Tunnel-Type Pipe for Launch Vehicle (발사체 산화제 터널형 배관 성능시험)

  • Kil, Gyoung-Sub;Han, Sang-Yeop;Kho, Hyeon-Seok;Shin, Dong-Sun;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.273-277
    • /
    • 2009
  • An oxidizer tunnel-type pipe, which shall transport oxidizer from an oxidizer tank to a turbo-pump of an engine, studied is installed through a fuel tank located under an oxidizer tank. A tunnel-type pipe can save weight compared to a detour-type pipe, however may vary the temperature of fuel stored in a fuel tank because of a broad heat transfer area. Hence in this study the characteristics of main oxidizer pipe and thermal propagation from oxidizer to a fuel tank are monitored by a cryogenic performance test with a tunnel-type pipe. In addition, the possibility of adaptation of an oxidizer tunnel-type pipe to launcher system is also analyzed.

  • PDF

The Measurement of Membrane Deformation Behavior in Kogas Pilot LNG Storage Tank by the use of Mechanical/Electrical Sensor (I) (기계적/전기적 측정 센서를 이용한 Kogas Pilot LNG 저장탱크 멤브레인 변형 거동 측정(I))

  • Kim Y.K.;Hong S.H,;Oh B.T.;Yoon I.S.;Kim J.H.;Kim S.S.
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.13-17
    • /
    • 2003
  • A membrane unit for Liquefied Natural Gas (LNG) storage tank is a structural member which is designed specifically for preventing undesirable LNG leakage. Membrane units have to endure gas and liquid pressures by LNG and thermal stresses by the contact with cryogenic liquid of $-162^{\circ}C$. It is of importance to assure the strengths of membrane by experimental stress analysis under the temperature of LNG. In this paper, we proposed measurement system using commercial electrical strain gage and mechanical extension meter designed for this study.

  • PDF