• 제목/요약/키워드: Liquid flow

검색결과 2,938건 처리시간 0.029초

사각 마이크로 채널 내 Taylor Flow의 기포 및 액체 슬러그 유동 특성에 대한 연구 (Study on the Characteristics of Bubble and Liquid Slugs for Gas-Liquid Taylor Flow in a Rectangular Micro-channel)

  • 이준경;이관근
    • 설비공학논문집
    • /
    • 제27권10호
    • /
    • pp.520-526
    • /
    • 2015
  • The characteristics of gas-liquid Taylor (Slug) flow in a square micro-channel of $600{\sim}600{{\mu}m}$ were investigated experimentally in this paper. The test fluids were nitrogen and water. The liquid and gas superficial velocities were 0.01~3 m/s and 0.1~3 m/s, respectively. Bubble and liquid slug length, bubble velocity, and frequency were measured by analyzing optical images using a high speed camera. Bubble length decreased with higher liquid flow rate, which increased dramatically with higher gas flow rate. However, slug length did not vary with changes in inlet liquid conditions. Additionally, bubble velocities and frequencies increased with higher liquid and gas flow rates. It was found that measured bubble lengths were in good agreement with the empirical models in the existing literature, but slug lengths were not.

수직관 내 순수 증기의 층류 액막 응축 모델 (Laminar Film Condensation Model of Pure Steam in a Vertical Tube)

  • 김동억
    • 한국유체기계학회 논문집
    • /
    • 제17권3호
    • /
    • pp.33-40
    • /
    • 2014
  • In this study, a new model for calculating the liquid film thickness and condensation heat transfer coefficient in a vertical condenser tube is proposed by considering the effects of gravity, liquid viscosity, and vapor flow in the core region of the flow. In order to introduce the radial velocity profile in the liquid film, the liquid film flow was regarded to be in Couette flow dragged by the interfacial velocity at the liquid-vapor interface. For the calculation of the interfacial velocity, an empirical power-law velocity profile had been introduced. The resulting liquid film thickness and heat transfer coefficient obtained from the proposed model were compared with the experimental data from other experimental study and the results obtained from the other condensation models. In conclusion, the proposed model physically explained the liquid film thinning effect by the vapor shear flow and predicted the condensation heat transfer coefficient from experiments reasonably well.

가시화를 통한 Gas Injection System에 관한 연구 (Analysis of Gas Injection System based on Flow Visualization)

  • 서동표;오율권
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.85-88
    • /
    • 2002
  • In order to visually analyze the flow characteristics, gas was injected into the liquid bath through nozzle installed at the center of bottom of the bath. When gas was injected into the liquid bath, several flow patterns were observed bubble-liquid plumb, the spout flow that occurred at the free surface, liquid circulation flow by bubble's behavior, etc. Various bubbles, from small bubbles to Taylor bubbles, consisted of the bubble-liquid plumb. In the pure liquid region, the large and small several vortices were formed and irregularly circulated. These irregular repetition and circulation play a important role of mixing in the bath. The vortices were developed in the upper and the side wall regions and the movement of flow in the low region was very small. It is known as 'dead zone'.

  • PDF

平滑流의 分裂길이에 미치는 同軸氣流의 영향 (The influence of co-axial air flow on the breakup length of a smooth liquid jet)

  • 김덕줄;이충원
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1390-1398
    • /
    • 1988
  • 본 연구에서는 액주가 가장 긴 평활류 조건하에서 여기에 동축수직하방으로 공기를 흘렸을 경우, 액주분열에 영향을 미친다고 생각되는 제 인자 즉, 액체유속, 공 기유속, 액체노즐과 공기 오리피스 직경의 비, 노즐의 형상, 기액 접촉개시 위치등을 변화시켜 분열과정 및 분열기구를 규명하고, 이류체 분사노즐의 설계기준을 제공하는 것을 그 목적으로 한다.

2유체 분무노즐의 분열특성(I)-액주분열 및 내부유동- (Breakup Characteristics in Plain Jet Air Blast Atomizer(I)-Jet Breakup and Internal Flow-)

  • 김혁주;이충원
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.1009-1023
    • /
    • 1997
  • The breakup length of a liquid jet with flowrate, formed by releasing through a nozzle of circular cross-section into the atmosphere, was experimented and studied for 3 liquid nozzles of varying diameters. The experimental result was analyzed using the existing theoretical equation for predicting the breakup length. It was found that the breakup length of liquid jet depends on the velocity, and the breakup length increases with increasing of the liquid nozzle diameter. Also, the variation range of the breakup length for the same flowrate of liquid increased rapidly as velocity was increased for laminar flow, but in the turbulent flow region, it leveled off in the range of approximately 0.55-0.7 of the mean breakup length. Furthermore, when the longest smooth liquid jet was applied to the co-axial flow air blast atomizer, the effect of air flow on the flow pattern and breakup length was studied for 6 glass nozzles of different lengths and diameters. It was found that depending on the diameter of the mixing tube and liquid jet, it was possible to observe a wide range of flow patterns, such as liquid jet through flow, partial annular flow and annular flow. The liquid jet breakup length was more sensitive to the change in the length rather than the diameter of the mixing tube. As the length of the mixing tube shortens, the breakup length also shortens rapidly.

중심 공기류를 이용한 환상 액막 미립화에 관한 연구-기/액 분사유속에 따른 입경 변화 고찰 (Atomization of Annular Liquid Sheet with Core Air Flow - SMD Variation with Gas/Liquid Injection Velocity)

  • 최철진;이상용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.131-135
    • /
    • 2001
  • The atomization characteristics of an annular liquid (water) sheet of small radius with a core gas (air) flow were studied. Different sizes of annular gaps (0.2, 0.4 and 0.8 mm) were tested to find the effect of liquid sheet thickness on SMD. The inner diameter of the gas port for the core gas flow was 4 mm. Cross-section averaged SMD was measured for various liquid and gas velocities. Regions of the SMD decrease with the increase of the liquid velocity always existed regardless of the liquid sheet thickness. This attributes to the transition of the flow patterns of spray and also to the aerodynamic interaction between the atomizing gas and the ripples on the liquid sheet surface.

  • PDF

PEM 연료전지 공기극 유로에서 물의 가동에 대한 CFD 해석 (CFD Analysis on Two-phase Flow Behavior of Liquid Water in Cathode Channel of PEM Fuel Cell)

  • 김현일;남진현;신동훈;정태용;김영규
    • 신재생에너지
    • /
    • 제3권4호
    • /
    • pp.8-15
    • /
    • 2007
  • Liquid water in flow channel is an important factor that limits the steady and transient performance of PEM fuel cells. A computational fluid dynamics study based on the volume-of-fluid [VOF] multi-phase model was conducted to understand the two-phase flow behavior of liquid water in cathode gas channels. The liquid water transport in $180^{\circ}{\Delta}$ bends was investigated, where the effects of surface characteristics (hydrophilic and hydrophobic surfaces], channel geometries (rectangular and chamfered corners], and air velocity in channel were discussed. The two-phase flow behavior of liquid water with hydrophilic channel surface and that with hydrophobic surface was found very different; liquid water preferentially flows along the corners of flow channel in hydrophilic channels while it flows in rather spherical shape in hydrophobic channels. The results showed that liquid water transport was generally enhanced when hydrophobic channel with rounded corners was used. However, the surface characteristics and channel geometries became less important when air velocity was increased over 10m/s. This study is believed to provide a useful guideline for design optimization of flow patterns or channel configurations of PEM fuel cells.

  • PDF

Riser의 기액유동 특성에 따른 Air-lift 펌프의 성능예측 (A Prediction of the Air-lift Pump Performance by gas-liquid Flow Charac teristics of Riser)

  • 박찬수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.252-258
    • /
    • 1999
  • As an effective means to convey crushed materials from seabed to on board ship and to raise hazardous or abrasive liquids air-lift pump provides a reliable mechanism due to its simple config-uration and easy-to-operate principle. The present study is focused on fundamental investigation of related performance by the analysis program based on the gas-liquid two-phase flow in circular pipes. The program covers pump operating in isothermal and vertical two-phase flow with Newto-nian liquids. it is summarized as important result that an optimum air mass flow rate exists for the maximum lifted liquid mass flow rate in terms of a given submergence rates and furthermore attachment of downcomer gives little effects on riser performance the conveyed liquid flow rate increases with larger submergence rate.

  • PDF

Experimental study on air-water countercurrent flow limitation in a vertical tube based on measurement of film thickness behavior

  • Wan, Jie;Sun, Wan;Deng, Jian;Pan, Liang-ming;Ding, Shu-hua
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1821-1833
    • /
    • 2021
  • The gas-liquid counter-current flow limitation (CCFL) is closely related to efficient and safety operation of many equipment in industrial cycle. Air-water countercurrent flow experiments were performed in a tube with diameter of 25 mm to understand the triggering mechanism of CCFL. A parallel electrode probe was utilized to measure film thickness whereby the time domain and frequency domain characteristics of liquid film was obtained. The amplitude of the interface wave is small at low liquid flow rate while it becomes large at high liquid flow rate after being disturbed by the airflow. The spectral characteristic curve shows a peak-shaped distribution. The crest exists between 0 and 10 Hz and the amplitude decreases with the frequency increase. The analysis of visual observation and characteristic of film thickness indicate that two flooding mechanisms were identified at low and high liquid flow rate, respectively. At low liquid flow rate, the interfacial waves upward propagation is responsible for the formation of CCFL onset. While flooding at high liquid flow rate takes place as a direct consequence of the liquid bridging in tube due to the turbulent flow pattern. Moreover, it is believed that there is a transition region between the low and high liquid flow rate.

액체 막이 입혀진 구 입자 배열을 지나는 기체 흐름 (Gas Flow through Arrays of Spheres Coated by Liquid Film)

  • 구상균
    • 공업화학
    • /
    • 제20권6호
    • /
    • pp.646-652
    • /
    • 2009
  • 본 연구는 표면에 액체 막이 입혀진 구 입자를 지나는 기체의 흐름이 구 입자에 작용하는 항력을 결정하는 3상계 문제를 다룬다. 기체 흐름의 관성은 무시할 정도로 작으며, 구 입자의 표면에서 액체는 중력에 의해 흐르고 액체 막이 기체 흐름에 영향을 받지 않는 경우를 고려한다. SC (simple cubic), BCC (body centered cubic), FCC (face centered cubic) 각 배열의 구 입자들에 대해 외란 기법(perturbation method)과 멀티폴 전개(multipole expansion) 방법을 이용하여 입자들의 수력학적 상호 작용을 계산하고 궁극적으로 액체 막과 액체의 흐름이 기체 흐름에 미치는 영향을 수치적으로 결정한다. 근사적인 방법으로 액체 막의 효과에 구하고 이를 엄밀한 계산 값들과 비교한 결과, 대체로 일치함을 보인다.