• Title/Summary/Keyword: Liquid crystal displays(LCD)

Search Result 121, Processing Time 0.031 seconds

Elastic Modulus Measurement of a Large Size Digital TV Display Unit (대형 Digital TV용 Display Unit의 강성 측정)

  • Kim Chang-Hoi;Moon Seong-In;Choi Jae-Boons;Kim Young-Jin;Lee Jeoung-Gwen;Koo Ja-Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.115-122
    • /
    • 2005
  • As the digital TV markets rapidly growing, many manufacturers introduce large size flat screen TV units. There are two different display types available to large size models which are plasma and TFT-LCD. Since both are constructed with thin large panels that are mostly fragile to even moderate mechanical shock inputs. Some large size panels are severely resonated by the acoustic sound generated TV which deteriorates video quality. Recognizing the potential problems of large displays, accurate measurement of the panels is to be an essential task for the reliable design. Measurement of mechanical properties of a thin large crystallized panel such as TFT-LCD display with traditional material testing equipments is challenging. Since TFT-LCDs are constructed with combination of brittle glass panels, polymer sheets, and liquid crystal, their properties are not only anisotropic but also usually non-linear. Accurate measurement of the properties often requires very expensive facilities. Especially when the size of the test sample is as large as 40-inch or wider, direct measurement cost is prohibitive. Even worse, machining of the large TFT-LCD to make a smaller size specimen that could be fit into a material tester is not possible because of liquid crystal leakage. A new method fer the measurement of elastic modulus of large TFT-LCD panel is presented in this article. The suggested method provides a simple, economic, and user-friendly way fer measuring the elastic modulus of large panels with considerable level of accuracy.

Improvement of Hysteresis Characteristics of Low Temperature Poly-Si TFTs (저온 Poly-Si TFT 소자의 Hysteresis 특성 개선)

  • Chung, Hoon-Ju;Cho, Bong-Rae;Kim, Byeong-Koo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.1
    • /
    • pp.3-9
    • /
    • 2009
  • Although Active matrix organic light emitting diode (AMOLED) display has a better image quality in terms of viewing angle, contrast ratio, and response time than liquid crystal displays (LCDs), it still has some critical issues such as lifetime, residual images, and brightness non-uniformity due to non-uniformity in electrical characteristics of driving TFTs and IR drops on supplied power line. Among them, we improved irrecoverable residual images of AMOLED displays which is mainly related to the hysteresis characteristics of driving TFTs. We consider four kinds of surface treatment conditions before gate oxide deposition for improving hysteresis characteristics. We can reduce the hysteresis level of p-channel TFT to 0.23 V, interface trap states between the poly-Si layer and gate insulator to $3.11{\times}10^{11}cm^{-2}$, and output current variation of p-channel TFT to 3.65 % through the surface treatment using ultraviolet light and H2 plasma. Therefore, the recoverable residual image problem of AMOLED displays can be improved by surface treatment using ultraviolet light and $H_2$ plasma.

  • PDF

Improve the Transparency of Liquid Crystal Display Using Hybrid Conductive Films Based on Carbon Nanomaterials

  • Shin, Seung Won;Kim, Ki-Beom;Jung, Yong Un;Hur, Sung-Taek;Choi, Suk-Won;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.241.2-241.2
    • /
    • 2014
  • We present highly transparent liquid crystal displays (LCDs) using hybrid films based on carbon nanomaterials, metal grid, and indium-tin-oxide (ITO) grid. Carbon based nanomaterials are used as transparent electrodes because of high transmittance. Despite of their high transmittance they have relatively high sheet resistance. To solve this problem, we applied grid and made hybrid conductive films based on carbon nanomaterials. Conventional photolithography processes were used to make a grid pattern of metal and ITO. To fabricate transparent conductive films, carbon nanotube (CNT) ink was spin coated on the grid pattern. The transparency of the conductive film was controlled by shape and size of the grid pattern and the thickness of CNT films. The optical transmittance of CNT-based hybrid films is 92.2% and sheet resistance is also reduced to $168{\Omega}/square$. These substrates were used for the fabrication of typical twisted nematic (TN) LCD cells. From the characteristics of LCD devices such as transmittance, operating voltage, voltage holding ratio our devices were comparable to those of pristine ITO substrates. The result shows that the hybrid conductive films based on carbon nanomaterials could be alternative of ITO for the highly transparent LCDs.

  • PDF

액정셀의 광학적 동특성 분석을 위한 실시간 측광식 편광계측기 : 제작과 성능시험

  • Yang, Byeong-Kwan;Rho, Bong-Gyu;Park, Chan;Kim, Jin-Seung;Kim, Jae-Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.6
    • /
    • pp.486-491
    • /
    • 1997
  • A division-of-amplitude type photopolarimeter has been constructed for the analysis of the dynamic optical characteristics of liquid crystal panels, one of the essential components of liquid crystal displays. In this instrument an incoming light ray, whose state of polarization is to be determined, is divided into three rays of nearly same intensities and of identical polarization state by using NPBS'(non-polarizing beam splitters). Each of the three rays is further divided into two components of orthogonal polarization states by using a PBS(polarizing cube beamsplitter) or by using a combination of a quater wave plate followed by a PBS. The intensity of each ray is measured by using a photodiode to produce a set of six photo-signals, which in turn are converted into four Stokes parameters describing the state of polarization of the incoming ray. Performance test of the insrument shows that its time resolution is 80 $mutextrm{s}$, accuracy $\pm$0.3 degrees when the state of polarization of the incoming ray is representated on the Poincare sphere.

  • PDF

Angle of View Polarization Characterization of Liquid Crystal Displays and Their Components

  • Boher, Pierre;Bignon, Thibault;Leroux, Thierry
    • Journal of Information Display
    • /
    • v.8 no.4
    • /
    • pp.10-14
    • /
    • 2007
  • LCD performance is generally evaluated in terms of luminance and color versus viewing angle. In the present paper, we show that this type of display can be favorably characterized in terms of polarization. We show that ELDIM EZContrast instrument which is routinely used for viewing angle measurements can be upgrade for measuring the polarization state of the light at each incidence and azimuth angle. More precisely, the degree of polarization of light, its ellipticity and polarization direction can be measured at each incidence angle between 0 and $88^{\circ}$ and for all the azimuth angles (from 0 to $360^{\circ}$). Important differences between the displays can be detected and related to their internal structures when luminance and color profiles are quite similar. The same setup can also be used to characterize optical components of the LCDs.

Display Technologies for Immersive Devices and Electronic Skin (디스플레이 현황과 발전방향 -실감 및 스킨 기기로의 확대)

  • Park, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.10-18
    • /
    • 2019
  • Since the introduction of CRT(Cathode Ray Tube) in the 1950s, display technologies have been developed continuously. Flat panel displays such as PDP(Plasma Display Panel) and LCD(Liquid Crystal Display) were commercialized in the late 1990s, and OLED(Organic Light Emitting Diodes) and Micro-LED(Micro-Light Emitting Diodes) are now being developed and are becoming widespread. In the future, we expect to develop ultra-realistic, flexible, embedded sensor displays. Ultra-realistic display can be applied to AR/VR(Augmented Reality/Virtual Reality) devices and spatial light modulators for holography. The sensor-embedded display can be applied to robots; electronic skin; and security devices, including iris recognition sensors, fingerprint recognition sensors, and tactile sensors. AR/VR technology must be developed to meet technical requirements such as viewing angle, resolution, and refresh rate. Holography requires optical modulation technology that can significantly improve resolution, viewing angle, and modulation method to enable wide-view and high-quality hologram stereoscopic images. For electronic skin, stable mass production technology, large-area arrays, and system integration technologies should be developed.

Two-Dimensional Simulation of Hg Flat Fluorescent Lamps for an LCD Backlight unit (액정디스플레이 후판광원용 평판형 수은 형광램프의 2차원 시뮬레이션 연구)

  • Yoon, Hyun-Jin;Lee, Hae-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1275-1281
    • /
    • 2007
  • The discharge phenomena in a flat fluorescent lamp for the backlight unit of liquid crystal displays are simulated by sung a two-dimensional fluid model. The numerical methods for the calculation of plasma dynamics and the radiation transport are introduced for the discharge simulation and for the transmission of the vacuum ultraviolet lights. The simulation results are presented to compare the luminance and the luminance efficacy with the variation of gas pressure, gas mixture ratio, driving voltage, and frequency.

Robust Motion Compensated Frame Interpolation Using Weight-Overlapped Block Motion Compensation with Variable Block Sizes to Reduce LCD Motion Blurs

  • Lee, Jichan;Choi, Jin Hyuk;Lee, Daeho
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.537-543
    • /
    • 2015
  • Liquid crystal displays (LCDs) have slow responses, so motion blurs are often perceived in fast moving scenes. To reduce this motion blur, we propose a novel method of robust motion compensated frame interpolation (MCFI) based on bidirectional motion estimation (BME) and weight-overlapped block motion compensation (WOBMC) with variable block sizes. In most MCFI methods, a static block size is used, so some block artefacts and motion blurs are observed. However, the proposed method adjusts motion block sizes and search ranges by comparing matching scores, so the precise motion vectors can be estimated in accordance with motions. In the MCFI, overlapping ranges for WOBMC are also determined by adjusted block sizes, so the accurate MCFI can be performed. In the experimental results, the proposed method strongly reduced motion blurs arisen from large motions, and yielded interpolated images with high visual performance and peak signal-to-noise ratio (PSNR).

Implementation of Look-Up Table for Quasi-Bi-Quadratic Interpolation Based on Least Square Approximation for LCD Displays (LCD 디스플레이 구동을 위한 최소 자승 근사에 의한 Quasi-Bi-Quadratic 보간법의 LUT 구현)

  • Park, Hee-Bum;Lee, Chul-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.425-426
    • /
    • 2006
  • Overdriving schemes are used to improve the response time of liquid crystal display. Typically they are implemented by using LUTs (look-up table) within an image processor. However, the size of LUT is limited by the physical memory size and system cost. In this paper, we present an improved method for LUT implementation using linear interpolation and piecewise least-square polynomial regression. Using the proposed method, the performance of LUT can be improved and memory size of that can be reduced.

  • PDF

Display power analysis and design guidelines to reduce power consumption

  • Issa, Joseph
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.167-177
    • /
    • 2012
  • Cold cathode fluorescent lamps (CCFLs) are used to provide lighting for liquid crystal displays (LCDs). This paper presents a set of guidelines for measurement characterization and design to reduce the power consumption of CCFL LCD backlight inverters and panel electronics. The proposed methods aim to reduce the backlight power consumption by fine-tuning a back-light inverter for a specific LCD, using several methods. First, the authors describe their power measurement methodology; and next, they identify different areas for tuning a backlight inverter for a given display. The experiment results showed that power savings can range from 50 to 200mW if the backlight inverter is properly tuned. This paper also proposes an optimized configuration for light-emitting device (LED) panels to reduce power loss by selecting a LED with a specific input voltage and number of cells to help minimize power loss.