• 제목/요약/키워드: Liquid cargo ship

검색결과 39건 처리시간 0.02초

내부재가 설치된 직육면체 화물창 내의 Sloshing 고유주기 산정 (An Analytic Solution to Sloshing Natural Periods for a Prismatic Liquid Cargo Tank with Baffles)

  • 신장룡;최경식;강신영
    • 한국해양공학회지
    • /
    • 제19권6호통권67호
    • /
    • pp.16-21
    • /
    • 2005
  • In the design of super tankers or LNG carriers, which transport a large amount of liquid in the cargo tanks, the structural d11mage due to liquid sloshing is an important problem. The impact pressure from sloshing is most violent when the liquid motion of a partially filled tank is in resonance with the motion of a ship. In this study, the sloshing natural periods of a baffled tank, often installed to reduce liquid motion, is analyzed. A variational method is adopted to estimate the sloshing natural periods for a prismatic cargo tank with baffles of arbitrary filling depth of liquid; the results are compared with Lloyd's Register regulations on sloshing periods. In this study, using an effective liquid-fill-depth concept, sloshing periods for a baffled tank can be expressed by the same form as rectangular prismatic tanks without baffles. In contrast to Lloyd's Register regulations, which can be applicable only to cargo tanks with constant baffle size and distribution, the present results can be applicable to cases of variable baffle size and distribution.

액체 화물창내의 SLOSHING 고유주기 산정에 관한 연구 (Estimation of Sloshing Natural Periods in Liquid Cargo Tanks)

  • 신장용;최경식;강신영;김현수
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.93-104
    • /
    • 1994
  • Recently in the design of super tankers or LNG carriers which transport a large amount of liquid in the cargo holds, the structural damage due to liquid sloshing becomes an important problem. The impact pressure from sloshing is most violent when the liquid motion of a partially filled tank is in resonance with the motion of a ship. In this paper the sloshing natural periods in liquid cargo tanks are estimated for partially filled tanks with various geometries. Especially the sloshing periods of baffled tanks which are often installed to reduce liquid motion and sloshing forces are calculated. A variational method is adopted to analyze the baffled tank of arbitrary filling depth of liquid. In this approach the liquid domain is divided into several subdomains in which the analytic solutions are potential energy are calculated from the velocity potentials in eachsubdomain. By minimizing the Hamilton's functional, the sloshing natural periods are estimated and the results are compared with experimental and numerical results.

  • PDF

Sensor Fault Detection and Analysis of Fault Status using Smart Sensor Modeling

  • Kim, Sung-Shin;Baek, Gyeong-Dong;Lee, Soo-Jin;Jeon, Tae-Ryong
    • Journal of information and communication convergence engineering
    • /
    • 제6권2호
    • /
    • pp.207-212
    • /
    • 2008
  • There are several sensors in the liquid cargo ship. In the liquid cargo ship, we can get values from various sensors that are level sensor, temperature sensor, pressure sensor, oxygen sensor, VOCs sensor, high overfill sensor, etc. It is important to guarantee the reliability of sensors. In order to guarantee the reliability of sensors, we have to study the diagnosis of sensor fault. The technology of smart sensor is widely used. In this paper, the technology of smart sensor is applied to diagnosis of level sensor fault for liquid cargo ship. In order to diagnose sensor fault and find the sensor position, in this paper, we proposed algorithms of diagnosis of sensor fault using independent sensor diagnosis unit and self fault diagnosis using sensor modeling. Proposed methods are demonstrated by experiment and simulation. The results show that the proposed approach is useful. Proposed methods are useful to develop smart level sensor.

Smart Cargo Monitoring System Based on Decision Support System for Liquid Carrier Tanker

  • Kim, Youn-Tae;Baek, Gyeong-Dong;Jeon, Tae-Ryong;Kim, Sung-Shin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권2호
    • /
    • pp.140-145
    • /
    • 2008
  • In this paper, we constructed the advanced cargo monitoring system for liquid cargo tankers which embedded the Decision Support System (DSS) based on the International Ship Management Code (ISM Code). To make this system, we first organized a base of expert's knowledge concerning liquid tanker operations that largely affect ocean accidents. We can find out the knowledge via inference method which simply imitates the fuzzy inference method. Based on this expert's knowledge, we constructed the DSS that provides a code of conduct for operating cargo tanks safely. The proposed monitoring system could eliminate human error when confronting dangerous situations, so the system will help sailors to operate cargo tanks safely.

화물창의 유체유동을 고려한 선체운동에 관한 연구 (A study on the Motions of a ship with Liquid Cargo Tanks)

  • 박명규;김순갑;김동준
    • 한국항해학회지
    • /
    • 제10권2호
    • /
    • pp.139-155
    • /
    • 1986
  • In this paper the dynamic effects due to the free water motions in tanks upon the lateral motion of a floating body in regular waves are calculated, in order to obtain the relationship between a motion of a floating body and that of the free water in tanks. Under the assumption that the fluid is ideal and motion amplitudes are small, velocity potential of the fluid in tanks is calculated by the source distribution method and the hydrodynamic forces and moments are calculated by the integration of fluid pressures over the tank surface. Hydrodynamic effects of the fluid on the floating body are expressed in terms of added mass and coupling coefficient obtained from the integration. Computations are carried out for ship with seven wide center tanks and comparisons between the liquid cargo loading case and the rigid cargo loading case are shown.

  • PDF

A Comparative Analysis on the Application of Harbor Design Criteria to Channels at Ulsan Port

  • Jeong, Woo-Lee
    • 한국항해항만학회지
    • /
    • 제40권5호
    • /
    • pp.291-297
    • /
    • 2016
  • Ulsan Port is the main port for handling liquid cargo because of natural environmental conditions and the distribution of port infrastructures in Korea. Damage to both liquid cargo vessels and the port structure caused by maritime accidents could have a serious impact on property and human lives as well as the marine environment. For safe navigation, the parties concerned should ensure the suitability of various design criteria at the harbor design stage. In this paper we analyze and compare various domestic and international harbor design criteria, and then apply each criteria to Ulsan port to evaluate its overall safety. Additionally, this paper specifies certain precautions in terms of reviewing a ship's safety for each channel at Ulsan Port, and suggests possible improvements to optimize channel design.

액체운반용 선박을 위한 진단기능을 가지는 스마트 카고 센서 개발 (Development of Smart Cargo Level Sensors Including Diagnostics Function for Liquid Cargo Ships)

  • 배현;김연태;박대훈;김성신;최문호;장용석
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.341-346
    • /
    • 2008
  • 본 연구에서는 화물 운송에 사용되는 운반선 중 하나인 액체운반선을 유지 관리하기위한 통합 자동화 시스템인 스마트 카고 탱커 진단 모니터링 시스템을 개발하였다. 본 연구를 통해 선박의 특수성을 고려한 선박용 능동형 스마트 센서 개발 기술을 확보하고 고신뢰성 및 내환경성을 가진 기자재를 개발하고자 하였다. 본 연구에서 제안한 카고 모니터링 시스템은 증기 압력 모니터링 부분, 카고 수위 모니터링 부분, 수위 초과 모니터링 부분, 가스 모니터링 부분, 탱크 온도 모니터링 부분으로 구성된다. 본 시스템은 각 단위 시스템으로부터 전송되는 신호의 신뢰성, 적절성 그리고 센서 자체의 이상 유무를 스스로 진단한다. 최종적으로 각 시스템의 고장진단 및 예측을 통하여 운항중인 선박에서 효과적으로 화물을 유지 관리 할 수 있도록 하는 포괄적인 통제 모니터링 시스템 개발을 목적으로 한다.

Moment of inertia of liquid in a tank

  • Lee, Gyeong Joong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.132-150
    • /
    • 2014
  • In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green's 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solutions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.