• 제목/요약/키워드: Liquid air

검색결과 1,741건 처리시간 0.032초

Photodegradation of Volatile Organic Compound (VOC) Through V-Doped or CuOx-grafted $TiO_2$ nanoparticles

  • Kim, Beum Woo;Kim, Seonmin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.271.1-271.1
    • /
    • 2013
  • Titania is usually used in sun-screens, tooth paste, and other daily used objects as a pigment. However, scientists have focused on titania as photocatalyst due to its excellent activities. By fabricating vanadium doped TiO2 and CuOx co-catalyzed TiO2 nano-size filter, the degradation level of the volatile organic compound (VOC) concentration was tested using 365nm UV LED as light source in a closed chamber. Main purpose for this test is to evaluate the activities of various catalysts for degrading the VOCs which are detrimental to human body and toluene and p-xylene were chosen in the VOC removal test. Target gas materials were injected into the test chamber with dry air as carrier gas which was flowed into the gas washer bottle filled with liquid form of VOC substance. When the VOC gas flows into the chamber, it is circulated by 200 mm fan in order to contact with the set-up filter on the aluminum holder. Target gas concentration in the chamber was monitored using VOC detector (miniRae3000, Raesystems) which was also placed inside the chamber. With the measured concentration, the VOC degradation efficiency and the degradation rate were evaluated and used to compare the catalytic activities.

  • PDF

생물학적 초미세력 검출을 위한 탄소나노튜브 프로브의 제작 및 기계적 특성 검출 (Fabrication and Mechanical Properties of Carbon Nanotube Probe for Ultrasmall Force Measurement in Biological Application)

  • 권순근;박효준;이형우;곽윤근;김수현
    • 한국정밀공학회지
    • /
    • 제25권5호
    • /
    • pp.140-147
    • /
    • 2008
  • In this study, a carbon nanotube probe (CNT probe) is proposed as a mechanical force transducer for the measurement of pico-Newton (pN) order force in biological applications. In order to measure nantube's displacement in the air or liquid environment, the fabrication of a CNT probe with tip-specific loading of fluorescent dyes is performed using tip- specific functionalization of the nanotube and chemical bonding between dyes and nanotube. Also, we experimentally investigated the mechanical properties of the CNT probe using electrostatic actuation and fluorescence microscope measurement. Using fluorescence measurement of the tip deflection according to the applied voltage, we optimized the bending stiffness of the CNT probe, therefore determined the spring constant of the CNT probe. The results show that the spring constant of CNT probes is as small as 1 pN/nm and CNT probes can be used to measure pN order force.

X-선조사(線照射)에 의한 세포내효소분자(細胞內酵素分子)의 불활성화(不活性化)에 관한 연구(硏究) (Study on the inactivation of intracellular enzyme mlecules by X-ray irradiation)

  • 이상복
    • Journal of Radiation Protection and Research
    • /
    • 제2권1호
    • /
    • pp.31-37
    • /
    • 1977
  • Inactivation of the glutamic acid dehydrogenase and glucose-6-phosphate dehydrogenase enzyme-molecules in the Ehrlich ascites tumor cells of the mouse were studied. The above mentioned intracellular enzymemolecules were irradiated by the X-ray radiation under the condition of 65 kV, I Amp. under the atmosphere of nitrogen gases and by $4^{\circ}C$. Thereby, irradiation doses were 580 KR/min($error:{\pm}3%$). After irradiation, the cell homogentes were prepared through liquid air techniquese. There after, the activities of the enzymes were measured with photometric method given by O. Warburg and W. Christian. The dose effect curves of the activities of the two enzymes by the X-ray irradiation showed both exponential and the inactivation doses were $6,5.10^{0}\;and\;5,0.10^{6}$ R respectively. These results showed one side that the inactivation process of the intracelluar enzymemolecules was one hit reaction after target theory, and the other side that this inactivation process could not be the primary causes of the death through X-ray irradiation of the vertebrate animals, because of the high resistance of the intracellular protein molecules against X-ray irradiation. The one hit reaction by the inactivation process of the irradiated intracellular enzymemolecules was discussed.

  • PDF

미세채널내 증발을 고려한 두 유체간 열전달현상에 대한 해석적인 연구 (An Analytical Study on a Heat Transfer Mechanism with Boiling Effect between Two Fluids in a Mini-channel)

  • 유영준;최상민
    • 한국추진공학회지
    • /
    • 제17권2호
    • /
    • pp.114-121
    • /
    • 2013
  • 미세채널을 갖는 증발형 열교환기의 효율을 평가하기 위하여, 공기의 온도와 물의 온도와 같은 열교환기의 상태값들을 계산하기위한 관계식들이 문제를 단순화하기 위한 몇 가지 가정을 적용한 Navier-Stokes 방정식으로부터 유도되었다. 미세채널내부는 물의 상태에 따라 3가지 영역으로 나누었다. 이 연구의 결과로써, 미세유로를 갖는 증발형 열교환기의 증발시작시점과 건조완료점을 계산하는 방정식이 제시되었다. 본 연구결과는 증발효과를 이용하는 미세채널형 열교환기의 설계, 성능예측 및 시험결과 분석 등에 효과적으로 활용될 수 있을 것으로 기대된다.

동력분산형 고속전철의 추진시스템용 냉각장치 설계 및 시제품 제작 연구 (Study on the Design and the Prototype Manufacture of Cooling systems of the Propulsion System for the EMU)

  • 유성열;김성대;기재형;임광빈;김철주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.422-429
    • /
    • 2008
  • The objective of the present study is to develope a propultion unit cooling system for the next-generation High-speed EMU. The propulsion power control unit consists of some IGBT semiconductors. In general, those power semiconductors are very sensitive to temperatures and need a cooling system to keep them at a proper operational conditions in the range of $50{\sim}100^{\circ}C$. In this first year of study, we tried to focuss on the understanding of fundamental technologies for each of the two different cooling systems and collecting basic data for design and manufacturing for both cases. For the water cooling system, a heat sink with multi channels of liquid flow was considered and a model unit was designed and performance test was conducted. For the heat pipe cooling system, a Loop Heat Pipe(LHP) was considered as an element to transport heat from IGBT to environment air flow and a model unit was designed and performance test was conducted. The analysis using SINDA/FLUINT showed that those design parameters are good enough for the LHP to properly operate under a heat load up to around 360W.

  • PDF

연료전지 자동차의 물탱크 해빙과정에 대한 수치해석적 연구 (Numerical analysis of melting process in a water tank for fuel-cell vehicles)

  • 김학구;정시영;허남건;임태원;박용선
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.74-79
    • /
    • 2006
  • Good cold start characteristics are essential for satisfactory operation of fuel cell vehicles. In this study, the melting process has been numerically investigated for a water tank frozen in cold weather The 2-D model of the tank containing ice and plate heaters was assumed and the unsteady melting process of the ice was calculated. The enthalpy method was used for the description of the melting process, and a FVM code was used to solve the problem. The feasibility study compared with other experiment showed that the developed program was able to describe the melting process well. From the numerical analysis carried out for different wall temperatures of the pate heaters, some important design factors could be found such as local overheating and pressurization in the tank.

  • PDF

정수 설비를 위한 양전하가 부가된 다공성 수처리 필터 개발과 성능평가 (Development and Performance Evaluation of Positively Charged Porous Filter media for Water Purification System)

  • 이창건;주호영;이재근;안영철;박성은
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.95-98
    • /
    • 2006
  • Filtration by fibrous filter is one of the Principle methods used for removing pollutant particles in the liquid. Because of the increasing need to protect both human health and valuable devices from exposure to fine particles, filtration has become more important. Filters have been developed with modified surface charge characteristics to capture and adsorb particles by electrokinetic interaction between the filter surface and particles contained in water. The main purposes of this study are to develop and evaluate the performance evaluation of the apparatus for making a positively charged porous filter media and to analyze the surface characteristics of the filter media for capturing negavitely charged contaminants mainly bacteria and virus from water. The experimental apparatus consists of a mixing tank, a vacuum pumping system, a injection nozzle, a roller press and a controller. The filter media is composed of glass fiber(50-750 nm), cellulose($10-20{\mu}m$) and colloidal charge modifier. The characteristics of filter media is analyzed by SEM(Scanning Electron Microscopy), AFM(Atomic Force Microscopy) and quantified by measuring the zeta potential values.

  • PDF

대기 온도에 따른 가솔린 차량의 실도로 배출가스 특성 연구 (Study on RDE (Real Driving Emission) Characteristic of Gasoline Vehicle Depending on the Ambient Temperature)

  • 김현진;김성우;이민호;김기호;이정민
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.221-226
    • /
    • 2018
  • Despite the increasingly stringent automotive emissions regulations, the impact of vehicle emissions on air pollution remains large. In addition, since the issue of emission of more exhaust gas than the exhaust gas measured in the test room when the vehicle passing the exhaust gas regulation standard is run on the actual road, many countries studied and introduced gas regulations about Real Driving Emission using Portable Emission Measurement System. At present, Korea regulations restrict the number of NOx and PN in diesel vehicles. In the case of gasoline vehicles, there is no regulation on emission gas, but there is a problem of continuing automobile exhaust gas problems and a large amount of gasoline GDI vehicle's PN emission. So research and interest are increasing due to this problem. In this study, characteristics of exhaust gas depending on changes of ambient temperature were analyzed among various factors affecting exhaust gas measurement of gasoline vehicles. As a result, at the low temperature test, the lower the ambient temperature, the more the exhaust gas was emitted. At ordinary temperature test, no specific tendency was observed due to changes of ambient temperature.

Research on the Variable Rate Spraying System Based on Canopy Volume Measurement

  • Hu, Kaiqun;Feng, Xin
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1131-1140
    • /
    • 2019
  • Characteristics of fruit tree canopies are important target information for adjusting the pesticide application rate in variable rate spraying in orchards. Therefore, the target detection of the canopy characteristics is very important. In this study, a canopy volume measurement method for peach trees was presented and a variable rate spraying system based on canopy volume measurement was developed using the ultrasonic sensing, one of the most effective target detection method. Ten ultrasonic sensors and two flow control units were mounted on the orchard air-assisted sprayer. The ultrasonic sensors were used to detect the canopy diameters and the flow controls were used to modify the flow rate of the nozzles in real time. Two treatments were established: a constant application rate of $300Lha^{-1}$ was set as the control treatment for the comparison with the variable rate application at a $0.095Lm^{-3}$ canopy. The tracer deposition at different parts of peach trees and the tracer losses to the ground (between rows and within rows) were analyzed in detail under constant rate and variable rate application. The results showed that there were no significant differences between two treatments in the liquid distribution and the capability to reach the inner parts of the crop canopies.

보틀플리핑의 로봇 강화학습을 위한 효과적인 보상 함수의 설계 (Designing an Efficient Reward Function for Robot Reinforcement Learning of The Water Bottle Flipping Task)

  • 양영하;이상혁;이철수
    • 로봇학회논문지
    • /
    • 제14권2호
    • /
    • pp.81-86
    • /
    • 2019
  • Robots are used in various industrial sites, but traditional methods of operating a robot are limited at some kind of tasks. In order for a robot to accomplish a task, it is needed to find and solve accurate formula between a robot and environment and that is complicated work. Accordingly, reinforcement learning of robots is actively studied to overcome this difficulties. This study describes the process and results of learning and solving which applied reinforcement learning. The mission that the robot is going to learn is bottle flipping. Bottle flipping is an activity that involves throwing a plastic bottle in an attempt to land it upright on its bottom. Complexity of movement of liquid in the bottle when it thrown in the air, makes this task difficult to solve in traditional ways. Reinforcement learning process makes it easier. After 3-DOF robotic arm being instructed how to throwing the bottle, the robot find the better motion that make successful with the task. Two reward functions are designed and compared the result of learning. Finite difference method is used to obtain policy gradient. This paper focuses on the process of designing an efficient reward function to improve bottle flipping motion.