• Title/Summary/Keyword: Liquid air

Search Result 1,741, Processing Time 0.029 seconds

Photodegradation of Rhodamine B in $TiO_2$ suspension

  • Na, Young-Soo;Kim, Ji-Hye;Lee, Tae-Kyung;Lee, Song-Woo;Song, Seung-Koo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_3
    • /
    • pp.149-155
    • /
    • 2001
  • In recent years, rapid technological advances in the textile and dyeing industry have yielded benefits to society but have also generated new and significant environmental problems. The treatment alternatives applicable for the removal of color vary, depending upon the type of dye wastewater Advanced oxidation processes are considered to provide more permanent merits. One of these oxidation treatments attracting much attention is photocatalytic oxidation, which uses TiO$_2$ due to its non-toxic, insoluble liquid as well as a highly reactive nature under UV irradiation. This study sets out to demonstrate the effect of photocatalyst dosage, dye concentrations, pH and light intensity on color removal efficiency under aerobic conditions. The results of this study show Rhodamine B(RhB) was not decolorized when a dye solution was exposed only to air or treated by TiO$_2$ only In the presence of both TiO$_2$ and UV light, however, the presence of RhB decreased up to 95 % within 60minutes. The more addition TiO$_2$ and the more diluted dye solution, showed a higher removal rate.

  • PDF

Structural Analysis and Measurement of Turbopump Casings (터보펌프 케이징의 구조해석 및 측정)

  • Yun, Seok-Hwan;Jeon, Seong-Min;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.174-180
    • /
    • 2006
  • The present paper describes transient thermal and mechanical analyses of a lox/kerosene type turbopump in a LRE(Liquid Rocket Engine). Turbopumps are used to pressurize propellants to achieve higher specific impulse of LRE. The turbopump under development has been designed and verified by structural analyses using finite element methods. Some parts of the turbopump operate under cryogenic environments, while the others work under ambient and high temperature environments. Therefore, numerical analysis at a turbopump system level is essential. In this study, casing assemblies of lox pump and fuel pump were analyzed to determine strength test and air-tightness test conditions. Also, some operational stress and strains of fuel pump casings were measured and analyzed. Based on these results, stress concentration of fuel pump casings during the operation could be successfully predicted.

  • PDF

Effect of Additive Composition on Flexural Strength of Cullet-Loess Tile Bodies (첨가제의 조성이 폐유리-점토 타일의 곡강도에 미치는 영향)

  • Lee, Young-Il;Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.416-422
    • /
    • 2013
  • Cullet-loess tile bodies are successfully fabricated using cullet, loess, hollow microspheres, and sintering additives (borosilicate glass frit, boric acid, or fumed silica) as starting materials. The effects of the additive composition and sintering temperature on the sintered density and flexural strength of the cullet-loess tile bodies are investigated. The sintered density of the cullet-loess tile bodies increases with an increase in the sintering temperature as a result of the enhanced densification of pore walls through the viscous flow of a liquid phase formed from the glass frit and sintering additives. The flexural strength of the cullet-loess tile bodies increases with increases in the sintering temperature and the cullet content in the starting composition. A maximal flexural strength of 40 MPa is obtained in cullet-loess tile bodies sintered with glass frit at $800^{\circ}C$ in air.

Interface Chemical and Hydrodynamic Aspects of Deinking Process Using Flotation for Waste paper Recycling(II) (부유선별법을 적용한 탈묵공정의 계면화학적 및 수력학적 원리(II) -수력학적 원리를 중심으로-)

  • Sun-Young Park
    • Resources Recycling
    • /
    • v.5 no.4
    • /
    • pp.11-16
    • /
    • 1996
  • In the flotation system for deinking process, the ink partcles musl collidc with the air bubbles for adhesion The probability of bubble-particle collision is largely dependent on the hydrodynamic conditions The main reason for the very small ink particles not to be able to float easily may be tound in the hydrodynamic effects, which make small ink particlcs move following the slreamlines around the bubbles rather than achually collide with bubbles. Also. the low floatabdily of the large and heavy ink particles is due to the gravity force and viscous drag which affect uprising molinn of particles through the liquid. Therefore, it is vely important to control not only the surface chemical conditions but the hydrodynamic conditions in practical floialion system

  • PDF

Motion behavior research of liquid micro-particles filtration at various locations in a rotational flow field

  • Yan, Yan;Lin, Yuanzai;Cheng, Jie;Ni, Zhonghua
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.163-170
    • /
    • 2017
  • This study presents a particle-wall filtration model for predicting the particle motion behavior in a typical rotational flow field-filtration in blower system of cooker hood. Based on computational fluid dynamics model, air flow and particles has been simulated by Lagrangian-particle/ Eulerian-gas approaches and get verified by experiment data from a manufacturer. Airflow volume, particle diameter and local structure, which are related to the particle filtration has been studied. Results indicates that: (1) there exists an optimal airflow volume of $1243m^3/h$ related to the most appropriate filtration rate; (2) Diameter of particle is the significant property related to the filtration rate. Big size particles can represent the filtration performance of blower; (3) More than 86% grease particles are caught by impeller blades firstly, and then splashed onto the corresponding location of worm box internal wall. These results would help to study the micro-particle motion behavior and evaluate the filtration rate and structure design of blower.

Manufacturing and Temperature Measurements of a Sodium Heat Pipe

  • Lee, Byeong-In;Lee, Seong-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1533-1540
    • /
    • 2001
  • A high-temperature sodium stainless steel heat pipe was fabricated and its performance has been investigated. The working fluid was sodium and it was sealed inside a straight tube container made of stainless steel. The amount of sodium occupied approximately 20% of the total volume of the heat pipe and its weight was 65.7gram. The length of a stainless steel container is 1002mm and its outside diameter is 25.4mm. Performance tests were carried out in a room air condition under a free convective environment and the measured temperatures are presented. The start-up behavior of the heat pipe from a frozen state was investigated for various heat input values between 600W and 1205W. In steady state, axial temperature distributions of a heat pipe were measured and its heat transfer rates were estimated in the range of vapor temperature from 50$0^{\circ}C$ to 63$0^{\circ}C$. It is found that there are small temperature differences in the vapor core along the axial direction of a sodium heat pipe for the high operating temperatures. But for the range of low operating temperatures there are large temperature drops along the vapor core region of a sodium heat pipe, because a small vapor pressure drop makes a large temperature drop. The transition temperature was reached more rapidly in the cases of high heat input rate for the sodium heat pipe.

  • PDF

Heat Transfer Characteristics Around a Surface-Mounted Module Cooled by Piezoelectric Fan (압전세라믹 냉각홴에 의한 강제 공랭 모듈 주위의 열전달특성)

  • Park, Sang-Hee;Park, Gyu-Jin;Choi, Seong-Dae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.780-788
    • /
    • 2004
  • This paper reports the fluid flow and heat transfer around a module cooled by forced air flow generated by a piezoelectric(PZT) cooling fan. The fluids are locally accelerated by a flexible PZT fan which deflects inside a fluid transport system of comparatively simple structure mounted on a PCB in a parallel-plate channel(450${\times}$80${\times}$700㎣). Input voltages of 20-100V and a resonance frequency of 23㎐ were used to vibrate the cooling fan. Input power to the module was 4W. The fluid flow around the module was visualized by using PIV system. The temperature distributions around a heated module were visualized by using liquid crystal film(LCF). The cooling effect using a PZT fan was independent of the vent area ratios at the channel inlet and was similar to the forced convection cooling. We found that the flow type was Y-shape and the cooling effect was increased by the wake generated by a piezoelectric cooling fan.

A Study on the Moulding Analysis of Automobile Valve Body Mid-plate (자동차 밸브바디 중간플레이트 성형해석에 관한 연구)

  • Jang Hun;Sung Back-Sub;Cha Yong-Hoon;Kim Duck-joong;Lee Youn-sin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.174-179
    • /
    • 2005
  • In the super slow speed die casting process, the casting defects due to melt flow should be controlled in order to obtain sound casting products. The casting defects that are caused by molten metal were cold shut formation, entrapment of air, gas, and inclusion. But the control of casting defects has been based on the experience of the foundry engineers. The calculation of simulation can produce very useful and important results. The calculation data of die casting process condition from the computer simulation by the Z-CAST is made to insure that the liquid metal is injected at the right velocity range and that the filling time is small enough to prevent premature solidification. The parameters of runner shape that affected on the optimized conditions that was calculated with simple equation were investigated. These die casting process control techniques of automobile valve body mid-plate have achieved good agreement with the experimental data of tensile strength, hardness test, and material structure photographies satisfactory results.

  • PDF

Computational fluid dynamics analysis on the effect of inlet humidity for the performance of PEMFC with serpentine flow-fields (입구 가습량이 고분자 전해질 연료전지의 성능에 미치는 영향에 대한 CFD 해석연구)

  • Oh, Gyu-Hwan;Lee, Kyu-Jin;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2828-2833
    • /
    • 2008
  • Water management is one of many operating parameters, which influences the performance and stability of a proton exchange membrane fuel cell (PEMFC). Local humidity condition including liquid water saturation has profound impacts on the distributions of overpotentials, current density, and membrane water content. Computational fluid dynamics simulations were conducted to investigate the effect of the inlet humidity variation on the performance of a PEMFC of $9\;cm^2$ active cell area with serpentine flow fields. The results showed that the performance of the simulated PEMFC remained at an almost same level when the cathode inlet humidity was changed from 100% to 60%, while reaching its maximum at air humidity of 80%. However, further decrease in the cathode inlet humidity below 40% started to significantly deteriorate the performance of the PEMFC. The variations of overpotentials, membrane water content, etc. due to the change in the cathode inlet humidity were also discussed.

  • PDF

An Experimental Study on Oil Separation Characteristics of $CO_2$/PAG Oil Mixture in the Oil Separator (오일 분리기에서 $CO_2$/PAG오일 혼합물의 오일 분리특성에 관한 실험적 연구)

  • Kim, Kyung-Jae;Lee, Sung-Kwang;Cho, Eun-Young;Kang, Byung-Ha;Kim, Suk hyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.131-136
    • /
    • 2008
  • The oil separation in an oil separator is one of the most important characteristics for proper compressor operation. In this study, a gravity type of oil separator is used. Oil separation characteristics has been investigated for $CO_2$/PAG mixture in the range of oil concentration 0 to 5 weight-percent and the mixture temperature range of $5^{\circ}C$ to $15^{\circ}C$ and $70^{\circ}C$ to $90^{\circ}C$. The results obtained indicate that the oil separation is increased with an increase in the oil concentration. It is also found that the oil separation in liquid state is increased with an increase in the mixture temperature while the oil separation in gas state is decreased.

  • PDF