• Title/Summary/Keyword: Liquid Space

Search Result 612, Processing Time 0.023 seconds

Simple and Flexible Temperature Control System for Space Environment Test

  • Lee, Sang-Hoon;Cho, Hyok-Jin;Seo, Hee-Jun;Moon, Guee-Won;Choi, Seok-Weon
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.29.1-29.1
    • /
    • 2008
  • The temperature control system which is using liquid and gaseous nitrogen has been known as the most economical system to simulate space temperature condition due to relatively not expansive price of the liquid nitrogen (less than 0.2 USD per liter). And, among these systems, the closed loop system which circulates compressed nitrogen gas come from sprayed liquid nitrogen by blower and makes a target temperature with heat from an electrical heater and flow rate of liquid nitrogen is prevail all over the world. But, this complete closed loop system requires expansive equipments such as blower, heater, and liquid nitrogen injector, and special maintenance on the system. Therefore, KARI is developing efficient and simple open loop system which utilizes liquid and gaseous nitrogen with eliminating a special blower and other expansive units. In this study, this open loop system with more efficiency and flexibility will be designed and introduced.

  • PDF

A Review on Major Foreign Research Trend of Monomethylhydrazine Reaction for Space Propulsion Part I : Thermal Decomposition Reaction of Monomethylhydrazine (우주추진용 모노메틸하이드라진 반응에 대한 주요 해외연구 동향 조사 Part I : 모노메틸하이드라진의 열분해 반응)

  • Jang, Yohan;Lee, Kyun Ho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • Space propulsion system produces required thrust for satellites and space launch vehicles by using chemical reactions of a liquid fuel and a liquid oxidizer typically. For example, monomethylhydrazine-dinitrogen tetroxide, liquid hydrogen-liquid oxygen and RP-1-liquid oxygen are conventional combinations of liquid propellants used for the liquid propulsion system. Among several liquid propellants, the monomethylhydrazine is expecially preferred for a satellite fuel due to its better storability in liquid phase during a relatively long mission period under a space environment. Thus, a development importance of a bipropellant system using the monomethylhydrazine fuel is recognized recently as the national space program proceeds on a large scale. The objective of the present study is to review a foreign research trend of a thermal decomposition reaction of monomethyhydrazine to understand a fundamental basis of its chemical reaction to prepare for domestic development in future.

A Review on Major Foreign Research Trend of Monomethylhydrazine Reaction for Space Propulsion Part II : Chemical Reaction of Monomethylhydrazine-Dinitrogen Tetroxide (우주추진용 모노메틸하이드라진 반응에 대한 주요 해외연구 동향 조사 Part II : 모노메틸하이드라진-사산화이질소의 화학반응)

  • Jang, Yohan;Lee, Kyun Ho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.74-81
    • /
    • 2016
  • Space propulsion system produces required thrust for satellites and space launch vehicles by using chemical reactions of a liquid fuel and a liquid oxidizer typically. Among several liquid propellants, the monomethylhydrazine-dinitrogen tetroxide is expecially preferred for a GEO satellite propellants due to their better storability in liquid phase during a long mission life under a freezing space environment. Recently, a development of the monomethylhydrazine-dinitrogen tetroxide bipropellant system becomes important as the national space program requires the heavier and the more efficient space system. Thus, the objective of the present study is to review a foreign research trend of a chemical reaction between the monomethyhydrazine fuel and the dinitrogen tetroxide oxidizer to understand a fundamental basis of their characteristics to prepare for domestic development in future.

Experimental investigation on No-Vent Fill (NVF) process using liquid Nitrogen

  • Kim, Youngcheol;Seo, Mansu;Yoo, Donggyu;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.71-77
    • /
    • 2014
  • For a long-term space mission, filling process of cryogenic liquid propellant is operated on a space vehicle in space. A vent process during transfer and filling of cryogenic propellant is needed to maintain the fuel tank pressure at a safe level due to its volatile characteristic. It is possible that both liquid and vapor phases of the cryogenic propellant are released simultaneously to outer space when the vent process occurs under low gravity environment. As a result, the existing filling process with venting not only accompanies wasting liquid propellant, but also consumes extra fuel to compensate for the unexpected momentum originated from the vent process. No-Vent Fill (NVF) method, a filling procedure without a venting process of cryogenic liquid propellant, is an attractive technology to perform a long-term space mission. In this paper, the preliminary experimental results of the NVF process are described. The experimental set-up consists of a 9-liter cryogenic liquid receiver tank and a supply tank. Liquid nitrogen ($LN_2$) is used to simulate the behavior of cryogenic propellant. The whole situation in the receiver tank during NVF is monitored. The major experimental parameter in the experiment is the mass flow rate of the liquid nitrogen. The experimental results demonstrate that as the mass flow rate is increased, NVF process is conducted successfully. The quality and the inlet temperature of the injected $LN_2$ are affected by the mass flow rate. These parameters determine success of NVF.

THE CRYOGENIC REGULATOR DESIGN FOR LIQUID PROPULSION SYSTEM

  • Kil Gyoung-sub;Lee Joong-Youp;Na Han-Bee;Kim Byung-Hun;Chung Young-Gaph
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.227-230
    • /
    • 2004
  • The regulator that was designed for space use must be operating on the severe circumstance. For example, operating temperature is below 90K and operating pressure is 20.7 MPa. The design of regulator for liquid propulsion system was accomplished and dynamic characteristic was analyzed successfully.

  • PDF

Coupled hydroelastic vibrations of a liquid on flexible space structures under zero-gravity - Part I. Mechanical model

  • Chiba, Masakatsu;Chiba, Shinya;Takemura, Kousuke
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.303-327
    • /
    • 2013
  • The coupled free vibration of flexible structures and on-board liquid in zero gravity space was analyzed, considering the spacecraft main body as a rigid mass, the flexible appendages as two elastic beams, and the on-board liquid as a "spring-mass" system. Using the Lagrangians of a rigid mass (spacecraft main body), "spring-mass" (liquid), and two beams (flexible appendages), as well as assuming symmetric motion of the system, we obtained the frequency equations of the coupled system by applying Rayleigh-Ritz method. Solving these frequency equations, which are governed by three system parameters, as an eigenvalue problem, we obtained the coupled natural frequencies and vibration modes. We define the parameter for evaluating the magnitudes of coupled motions of the added mass (liquid) and beam (appendages). It was found that when varying one system parameter, the frequency curves veer, vibration modes exchange, and the significant coupling occurs not in the region closest to the two frequency curves but in the two regions separate from that region.

Numerical Study of Chemical Reaction for Liquid Rocket Propellant Using Equilibrium Constant (평형상수를 이용한 액체로켓 추진제의 화학반응 수치연구)

  • Jang, Yo Han;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.333-342
    • /
    • 2016
  • Liquid rocket propulsion is a system that produces required thrust for satellites and space launch vehicles by using chemical reactions of a liquid fuel and a liquid oxidizer. Monomethylhydrazine/dinitrogen tetroxide, liquid hydrogen/liquid oxygen and RP-1/liquid oxygen are typical combinations of liquid propellants commonly used for the liquid rocket propulsion system. The objective of the present study is to investigate useful design and performance data of liquid rocket engine by conducting a numerical analysis of thermochemical reactions of liquid rocket propellants. For this, final products and chemical compositions of three liquid propellant combinations are calculated using equilibrium constants of major elementary equilibrium reactions when reactants remain in chemical equilibrium state after combustion process. In addition, flame temperature and specific impulse are estimated.

An Interpretation of Deleuze's Other Geometry in Terms of Liquid Space - Focused on Works Published since 2000 - (리퀴드 스페이스에 대한 들뢰즈의 타자의 기하학적 해석 - 2000년도 이후 발표된 작품을 중심으로 -)

  • Kim Sun-Hee;Lee Hanna
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.5 s.52
    • /
    • pp.98-105
    • /
    • 2005
  • Through advanced computer technology, our physical environment became a flexible and liquid space that is a multi-functional space structure, hetero-alliance, formless, interactivity. We attempt to interpretate Deleuze's Other geometry as a space designer. Hence first, the aim of this study is to define the meaning of the Other and Other geometry. Second, to extract keywords out of the Other geometry to analyze the work. Third, to analyze the work using the space formative languages(blob, blurring, distortion, folding, layering, lightness, nesting, repetition, shear, transparency, twisting, unfolding, warping, waving, and weaving). The 13 works were selected which have been issued after year 2000 with the focus on liquid space studies. The methods of this study are literature research and contents analysis. The results of the analysis were as follows. First, the source is the Other who is a hidden potentials in the surrounding environment, and this source has the capability of making it part of reality anytime. Other geometry means it is a theory that is comprised of various lines that with the kind of experiences that one has in life. Second, the key words that were extracted from the theory of Deleuze's Other geometry were of (1)hetero-alliance(reflected in a sculptured shape or a fluid abstract form), (2)dis-form(by speculating the user's movements, and combining space elements with external forces), (3)interactivity (information was exchanged real time between the user and his environment where the space took on a sensory institution). Finally, after studying the works using the space formative languages, we found that blob, warping, waving were used externally, and repetition, warping and waving for mostly used internally.

Transient Stability in Dry-winding Superconducting Magnets (비함침 초전도마그네트의 과도안정성)

  • Kim, Seok-Beom;Ishiyama, Atsushi;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.89-91
    • /
    • 1996
  • In dry-winding(unfilled) superconducting magnets, the behavior of liquid helium occupying the extremely small void space within the winding is contributed as a primary factor for transient stability of magnets. Therefore, numerical experiments have been carried out concerning the influences of transient heat transfer of liquid helium ocupying the void space in the winding and thermal properties of insulation at the conductor surface on the transient stability of magnets, by using three-dimensional finite element method(FEM). In this paper, we are going to consider three different cases for heat transfer characteristics of liquid helium to observe the influences of the rest of liquid helium in void space within the winding on the transient stability.

  • PDF

Effect of Mixture Ratio Variation near Chamber Wall in Liquid Rocket Engine

  • Han, Poong-Gyoo;Kim, Kyoung-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • An experimental research program is being undertaken to develop a regeneratively-cooled experimental thrust chamber of liquid rocket engine using liquefied natural gas and liquid oxygen as propellants. Prior to firing test using a regenerative cooling with liquefied natural gas in this program, several firing tests were conducted with water as a coolant. Experimental thrust chambers with a thrust of about 10tf were developed and their firing test facility was built up. Injector used in the thrust chamber was of shear-coaxial type appropriate for propellants of gas and liquid phase and cooling channels are of milled rectangular configuration. Periodical variation of the soot deposition and discoloration was observed through an eyes' inspection on the inner wall of a combustion chamber and a nozzle after each firing test, and an intuitive concept of the periodical variation of mixture ratio near the inner wall of a combustion chamber and a nozzle at once was brought about and analyzed quantitatively. Thermal heat flux to the coolant was calculated and modified with the periodical variation model of mixture ratio, and the increment of coolant temperature at cooling channels was compared with measured one.