• 제목/요약/키워드: Liquid Slug

검색결과 52건 처리시간 0.022초

열모세관 현상에 의한 액체 슬러그 이동에 관한 연구 (A Study of Thermocapillary Migration of a Liquid Slug)

  • 김호영;김이구;강병하
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1521-1527
    • /
    • 2004
  • Thermocapillary migration of a liquid slug is caused by temperature difference between the ends of a slug. The temperature difference induces the difference of the surface tension coefficient and consequently of capillary pressure between the ends of the slug. Presently available model to predict a velocity of thermocapillary migration adopts the Poiseuille equation which is valid only for a very long slug and neglects the shear stress near the contact line. In the present study, a new model has been developed to consider the shear stress near the contact line so that it can be applied to slugs or drops of general configuration. The experiments using mineral oil with the length to diameter ratio being 10 and a glass capillary were performed. It was found that the liquid slug began to move upon overcoming contact angle hysteresis when the temperature difference reached 35$^{\circ}C$. The results indicate that the new model well predicts the velocity of the liquid slug.

사각 마이크로 채널 내 Taylor Flow의 기포 및 액체 슬러그 유동 특성에 대한 연구 (Study on the Characteristics of Bubble and Liquid Slugs for Gas-Liquid Taylor Flow in a Rectangular Micro-channel)

  • 이준경;이관근
    • 설비공학논문집
    • /
    • 제27권10호
    • /
    • pp.520-526
    • /
    • 2015
  • The characteristics of gas-liquid Taylor (Slug) flow in a square micro-channel of $600{\sim}600{{\mu}m}$ were investigated experimentally in this paper. The test fluids were nitrogen and water. The liquid and gas superficial velocities were 0.01~3 m/s and 0.1~3 m/s, respectively. Bubble and liquid slug length, bubble velocity, and frequency were measured by analyzing optical images using a high speed camera. Bubble length decreased with higher liquid flow rate, which increased dramatically with higher gas flow rate. However, slug length did not vary with changes in inlet liquid conditions. Additionally, bubble velocities and frequencies increased with higher liquid and gas flow rates. It was found that measured bubble lengths were in good agreement with the empirical models in the existing literature, but slug lengths were not.

슬러그류 액상속도 측정용 전류형식 전자기유량계 개발 (Development of a Current-Type Electromagnetic Flowmeter to Obtain the Liquid Mean Velocity in Two-Phase Slug Flow)

  • 강덕홍;안예찬;김종록;오병도;김무환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1951-1956
    • /
    • 2004
  • The transient nature and complex flow geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et $al.^{(1)}$). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. To do this, the velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for the simulated slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are required for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

  • PDF

슬러그 2상유동에서 전류형식 전자기유량계 수치적 신호예측 및 보정 (Numerical Signal Prediction and Calibration Using the Theory of a Current-Type Electromagnetic Flowmeter for Two-Phase Slug Flow)

  • 안예찬;오병도;김종록;김무환;강덕홍
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.671-686
    • /
    • 2005
  • The transient nature and complex geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et al.). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. The velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method, and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for simulating slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are proposed for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

마이크로 T자형 합류지점에서 기체 및 액체의 주입 방법이 기포 및 액체 슬러그 생성에 미치는 영향 (Effect of Gas- and Liquid-injection Methods on Formation of Bubble and Liquid Slug at Merging Micro T-junction)

  • 이준경;이치영
    • 대한기계학회논문집B
    • /
    • 제40권4호
    • /
    • pp.227-236
    • /
    • 2016
  • 본 논문에서는 $600{\times}600{\mu}m$ 사각 마이크로 채널에서 T자형 합류지점에서의 기체 및 액체의 주입방법이 기포 및 액체 슬러그의 생성에 미치는 영향을 실험을 통해 살펴보았다. 실험 유체로는 질소와 물을 사용하였으며, 액체 및 기체 겉보기 속도는 각각 0.05 - 1 m/s, 0.1 - 1 m/s 의 범위로 테일러 유동이 나타나는 구간에서 데이터를 얻었다. 기포 길이, 액체 슬러그 길이, 기포 속도 그리고 기포 생성 빈도를 고속 카메라를 사용하여 이미지 분석을 통해 측정하였다. 유사한 입구 겉보기 속도 조건에서, T-자형 합류지점의 main channel에 기체를 주입하는 방법(T_gas-liquid)이 액체를 주입하는 방법(T_liquid-gas)보다 기포와 액체 슬러그의 길이가 길었고 기포 생성 빈도는 낮았다. 한편, 두 주입방법에서 기포 속도는 유사하게 나타났다. T_liquid-gas 주입방법의 기존 예측 상관식은 T_gas-liquid 주입방법의 기포 길이, 기포 속도, 액체 슬러그 길이, 기포 생성 빈도 실험데이터를 각각 ~24 %, ~9 %, ~39 %, ~55 %로 예측하였다.

마이크로 채널 내 혼합부 형상이 2상 유동 양식에 미치는 영향에 대한 연구 (Effect of Various Shapes of Mixer Geometry on Two-Phase Flow Patterns in a Micro-Channel)

  • 이관근;이준경;박태현;김교남;박은주
    • 설비공학논문집
    • /
    • 제27권2호
    • /
    • pp.75-80
    • /
    • 2015
  • The effect of inlet mixer geometries on the two-phase flow patterns in square micro-channel with $600{\times}600{\mu}m$ was investigated experimentally in this paper. The 4 different mixer configurations based on the Y, Impacting, and two T types (gas and liquid inlets were switched) were used. The test fluids were nitrogen and water. The liquid and gas superficial velocities were 0.01~10 m/s and 0.1~100 m/s, respectively. Several distinctive flow patterns, namely, annular, slug-annular, slug, slug-bubbly, bubbly, and churn flow could be seen. The flow pattern maps for each mixer were suggested, and it can be concluded that two-phase flow patterns are not very sensitive to the mixer geometries. But the mixing behaviors of gas and liquid for each mixer were different for slug and bubbly flow. Thus, the characteristics of slug and bubble for each case were not same.

사각 마이크로 채널 내 Taylor 유동 특성 예측에 대한 연구 (Prediction of Two-phase Taylor Flow Characteristics in a Rectangular Micro-channel)

  • 이준경;이관근
    • 대한기계학회논문집B
    • /
    • 제39권7호
    • /
    • pp.557-566
    • /
    • 2015
  • 본 논문에서는 $600{\times}600{\mu}m$ 사각 마이크로 채널에서의 기-액체 테일러(슬러그) 흐름의 특성을 실험을 통해 살펴보았다. 실험 유체로는 질소와 물을 사용하였으며, 액체 및 기체 겉보기 속도는 각각 0.01 ~ 3 m/s, 0.1 ~ 3 m/s 의 범위에서 테일러 흐름이 나타나는 구간에서만 데이터를 얻었다. 기포 길이, 액체 슬러그 길이, 기포 속도 그리고 기포 생성 주파수를 고속 카메라를 사용하여 이미지 분석을 통해 측정하였다. 제시된 측정값(기포 길이, 액체 슬러그 길이, 기포 속도)과 이전 문헌에서 제안된 경험적 모델의 비교결과 대부분 오차가 50% 이상으로 나타났다. 따라서 기포와 액체 슬러그 길이 그리고 기포 속도에 대한 개선된 모델을 제시하였고, ${\pm}20%$ 이내의 비교적 우수한 결과를 볼 수 있었다. 또한 기포 생성 주파수는 기포 길이, 액체슬러그 길이 그리고 기포 속도의 관계를 이용하여 ${\pm}20%$ 이내에서 예측가능함을 알 수 있었다.

작은 수직관을 흐르는 기-액 슬러그 유동의 유동특성 (Flow Characteristics of a Gas-Liquid Slug Flow in Small Vertical Tubes)

  • 계석현;김동선
    • 설비공학논문집
    • /
    • 제25권5호
    • /
    • pp.246-254
    • /
    • 2013
  • Some characteristics of nitrogen-water slug flow were optically measured, in vertical acrylic tubes of 2, 5 and 8 mm diameter. Bubble velocity, bubble and unit cell lengths were measured, by analyzing the light intensity signals from two sets of dot laser-infrared sensor modules mounted along the transparent tubes. Optical images of the bubbles were also taken and analyzed, to measure bubble shapes and liquid film thickness. It was found that the measured bubble velocities were in good agreement with the empirical models in the literature, except for those measured under high superficial velocity condition in the 2 mm tube. Bubble length was found to be the longest in the 2 mm tube, being 4 to 5 times those of the other tubes. Liquid film was found to have developed early in the 2 mm tube, which made the blunt shape of the bubble head. Liquid film thickness in the 8 mm tube was measured at almost twice those of the other tubes.

작은 직경의 수직관을 흐르는 이산화탄소-물 슬러그 유동의 물질전달 특성 (Mass Transfer Characteristics of the Carbon Dioxide-Water Slug Flow in Vertical Small-Bore Tubes)

  • 이경재;김동선
    • 설비공학논문집
    • /
    • 제24권5호
    • /
    • pp.401-408
    • /
    • 2012
  • Volumetric mass transfer coefficient was measured with carbon dioxide and deionized water for the gas-liquid cocurrent slug flow in 2, 5 and 8 mm tubes. Measurement was repeated with and without a vertical section in an experimental setup and entrance effect was found greater for smaller tubes. Volumetric mass transfer coefficient in the vertical section was found generally a strong function of gas- and liquid-phase superficial velocities. 5 mm- and 8 mm-tube data are highly consistent each other but not with 2 mm tube.

두 개의 컨덕턴스미터를 이용한 슬러그류의 기공률 및 기공률 전달속력 실시간 측정 (Real-time measurement of void fraction and its propagation speed of slug flow with two Conductance meters)

  • 김종록;안예찬;강덕홍;김무환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1569-1573
    • /
    • 2004
  • Two ring-type conductance meters were manufactured to measure void fraction and its propagation speed in slug flow. The signal of conductance meter with two rings depends on liquid temperature. Therefore a conductance meter with separated probe designed by Coney (1973), which is independent of liquid temperature, was used and experimentally proved. The manufactured conductance meters showed a good repeatability and agreement with the analytical solution by Coney (1973). From time lag between two conductance meter, we could calculate the propagation speed of void fraction.

  • PDF