DOI QR코드

DOI QR Code

Mass Transfer Characteristics of the Carbon Dioxide-Water Slug Flow in Vertical Small-Bore Tubes

작은 직경의 수직관을 흐르는 이산화탄소-물 슬러그 유동의 물질전달 특성

  • Lee, Kyung-Jae (Dept. of Mechanical Engineering, Graduate School of Chungju National University) ;
  • Kim, Dong-Seon (Dept. of Mechanical Engineering, Chungju National University)
  • 이경재 (충주대학교 대학원 기계공학과) ;
  • 김동선 (충주대학교 기계공학과)
  • Received : 2011.12.19
  • Published : 2012.05.10

Abstract

Volumetric mass transfer coefficient was measured with carbon dioxide and deionized water for the gas-liquid cocurrent slug flow in 2, 5 and 8 mm tubes. Measurement was repeated with and without a vertical section in an experimental setup and entrance effect was found greater for smaller tubes. Volumetric mass transfer coefficient in the vertical section was found generally a strong function of gas- and liquid-phase superficial velocities. 5 mm- and 8 mm-tube data are highly consistent each other but not with 2 mm tube.

Keywords

References

  1. Zhao, T. S. and Bi, Q. C., 2001, Pressure drop characteristics the gas-liquid two-phase flow in vertical miniature triangular channels, Int. J. Heat Mass Transfer, Vol. 44, pp. 2523-2534. https://doi.org/10.1016/S0017-9310(00)00282-9
  2. Cheng, L. and Mewes, D., 2006, Review of two-phase flow and flow boiling of mixtures in small and mini channels, Int. J. Multiphase Flow, Vol. 32, pp. 183-207. https://doi.org/10.1016/j.ijmultiphaseflow.2005.10.001
  3. Ribatski, G., Wojtan, L., and Thome, J. R., 2006, An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels, Exp. Therm. Fluid Sci., Vol. 31, pp. 1-19. https://doi.org/10.1016/j.expthermflusci.2006.01.006
  4. Lee, K. J., Kye, S. H., and Kim, D. S., 2011, The mass transfer characteristics of carbon dioxide-water slug flow, Proc. SAREK Winter Meeting, pp. 59-62.
  5. Tortopidis, P. and Bontozoglou, V., 1997, Mass transfer in gas-liquid flow in small-diameter tubes, Chem. Eng. Sci., Vol. 52, pp. 2231-2237. https://doi.org/10.1016/S0009-2509(97)00027-4
  6. Lamourelle, A. P. and Sandall, O. C., 1972, Gas absorption into a turbulent liquid, Chem. Eng. Sci., Vol. 27, pp. 1035-1043. https://doi.org/10.1016/0009-2509(72)80018-6
  7. Kashid, M. N., Renken, A., and Kiwi-Minsker, L., 2011, Gas-iquid and liquid-iquid mass transfer in microstructured reactors, Chem. Eng. Sci., Vol. 66, pp. 3876-3897. https://doi.org/10.1016/j.ces.2011.05.015
  8. Segal, B. G., 1989, Chemistry-Experiment and theory, 2nd Ed., John Wiley and Sons, pp. 361-362.
  9. Cai, W. J. and Wang, Y., 1998, The chemistry, fluxes and sources of carbon dioxide in the estuarine waters of the Satila and Altamaha Rivers, Georgia, Limnology and Oceanography, Vol. 43, pp. 657-668. https://doi.org/10.4319/lo.1998.43.4.0657
  10. Caroll, J. J., Slupsky, J. D., and Mather, A. E., 1991, The solubility of Carbon Dioxide in Water at Low Pressure, J. Phys. Chem. Ref. Data, Vol. 20, pp. 1201-1209. https://doi.org/10.1063/1.555900
  11. Luo, D. and Ghiaasiaan, S. M., 1997, Liquidside interphase mass transfer in cocurrent vertical two-phase channel flows, Int. J. Heat Mass Transfer, Vol. 40, pp. 641-655. https://doi.org/10.1016/0017-9310(96)00104-4
  12. Scott, D. S. and Hayduk, W., 1966, Gas absorption in horizontal cocurrent bubble flow, the Canadian J. of Chem. Eng., Vol. 44, pp. 130-136. https://doi.org/10.1002/cjce.5450440302
  13. Kasturi, G. and Stepanek, B., 1974, Two-phase flow-III. Interfacial area in cocurrent gas-liquid flow, Chem. Eng., Sci. Vol.29, pp. 713-719. https://doi.org/10.1016/0009-2509(74)80187-9
  14. Kasturi, G. and Stepanek, B., 1974, Two-phase flow-IV. Gas and liquid side mass transfer coefficient, Chem. Eng. Sci., Vol. 29, pp. 1849-1856. https://doi.org/10.1016/0009-2509(74)85001-3
  15. Bercic, G. and Pintar, A., 1997, The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries, Chem. Eng. Sci., Vol. 52, pp. 3709-3719. https://doi.org/10.1016/S0009-2509(97)00217-0
  16. Mishima, K. and Hibiki, T., 1996, Some characteristics of air-water two phase flow in small diameter vertical tube, lnt. J. Multiphase Flow, Vol. 22, pp. 703-712. https://doi.org/10.1016/0301-9322(96)00010-9
  17. Nicklin, D. J., Wilkes, J. O., and Davidson, J. F., 1962, Two-phase flow in vertical tubes, Trans. Instn. Chem. Engrs., Vol. 40, pp. 61-68.
  18. Tomida, T., Yoshida, M., and Okazaki, T., 1976, Liquid-side volumetric mass transfer coefficient in upward two-phase flow of airliquid mixtures, J. Chem. Eng. Japan, Vol. 9, pp. 464-468. https://doi.org/10.1252/jcej.9.464
  19. Kim, H. Y., Saha, B. B., and Koyama, S., 2003, Development of a slug flow absorber working with ammonia-water mixture:part I.flow characterization and experimental investigation, Int. J. Refrig., Vol. 26, pp. 508-515. https://doi.org/10.1016/S0140-7007(03)00020-3
  20. Viana, F., Pardo, R., Yanez, R., Trallero, J. L., and Joseph, D. D., 2003, Universal correlation for the rise velocity of long gas bubbles in round pipes. J. Fluid Mech., Vol. 494, pp. 379-398. https://doi.org/10.1017/S0022112003006165

Cited by

  1. Flow Characteristics of a Gas-Liquid Slug Flow in Small Vertical Tubes vol.25, pp.5, 2013, https://doi.org/10.6110/KJACR.2013.25.5.246
  2. Semi-Empirical Analysis of the Mass Transfer Characteristics of the Slug Flow in Vertical Mesoscale Tubes vol.26, pp.8, 2014, https://doi.org/10.6110/KJACR.2014.26.8.366