• Title/Summary/Keyword: Liquid Propellant Rocket

Search Result 337, Processing Time 0.022 seconds

Development of Liquid Propellant Rocket Engine for KSR-III (KSR-III 액체추진제 로켓 엔진 개발)

  • Choi Hwan-Seok;Seol Woo-Seok;Lee Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.75-86
    • /
    • 2004
  • KSR-III is the first Korean sounding rocket propelled by a liquid propellant propulsion system and it has been developed over 5 years using purely domestic technologies. The propulsion system of KSR-III is a 13-ton class see-level thrust liquid rocket engine(LRE) which utilizes liquid oxygen and kerosene for its propellants and employed pressurized propellant feeding and ablative cooling system. The problem of combustion instabilities which has brought the most difficulty in the development was resolved by implementation of a baffle. Through the development of KSR-III LRE, meaningful achievements have been made in the core technologies of LRE such as design of injectors and combustion chambers and test, evaluation, and control of combustion instabilities. The acquired technologies will be applied to the development of higher performance LREs necessary for future space development programs such as Korean Small Launch Vehicles(KSLV) In this paper, the development of KRE-III LRE system is described including its design, analyses. performance tests and evaluation.

Research on Gas-phase Condensation of Cryogenic Propellant in Pipelines of a Liquid Rocket Engine (로켓엔진의 극저온 연료 공급관내에서 기체상 응축에 관한 연구)

  • Bershadskiy, Vitaly A.;Phyrsov, Valery P.;Cho, Kie-Joo;Oh, Seung-Hyub;Kim, Cheul-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.248-252
    • /
    • 2007
  • This article is related to the possibility for continuous operation of a liquid rocket engine when a portion of cryogenic propellant in the pipeline is vaporized. As a result of experimental studies imitating the formation of vapors in the flow, we confirmed the possibility of full gas-phase condensation in case temperature of cryogenic liquid is lower than it's saturation temperature in the pipeline. Empirical equation allowing to calculate a nonequilibrium condensation region in the steady flow of cryogenic liquid was obtained as a non-dimensional form and the fields of practical application were suggested.

The Characteristic Study on Mixture Ratio Stabilizer for Gas Generator of LRE(Liquid Rocket Engine) (액체로켓엔진 가스발생기 혼합비 안정기의 특성 연구)

  • Jung, Tae-Kyu;Lee, Joong-Yeop;Han, Sang-Yeop;Kwon, Se-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.509-512
    • /
    • 2006
  • The propellant mixture ratio of gas generator changes when thrust control valve operate to change LRE thrust level. The mixture ratio change of gas generator result in gas temperature change and failure of turbine blade or deterioration of LRE specific impulse. The mixture ratio stabilizer has been developed to maintain propellant mixture ratio of gas generator. This article deals with design and static/dynamic characteristic of stabilizer. Also gas generator system simulation test has shown that the stabilizer can maintain propellant mixture ratio effectively within tolerable range.

  • PDF

Real-Propellant Test of a Turbopump for a 30-Ton Thrust Level of Liquid Rocket Engine (30톤급 액체로켓엔진용 터보펌프 실매질시험)

  • Hong, Soon-Sam;Kim, Dae-Jin;Kim, Jin-Sun;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.20-26
    • /
    • 2009
  • Turbopump test for a 30-ton-thrust liquid rocket engine was carried out using real-propellant. Liquid oxygen, kerosene, cold hydrogen gas were used for the oxidizer pump, the fuel pump, and the turbine, respectively. The turbopump was reliably operated at the design and off-design conditions and the performance requirements were satisfied, which implies that the turbopump development at the engine subsystem level is successfully accomplished in the point of performance validation. This paper presents the results of a test where the turbopump was run for 75 seconds at three operating modes. In terms of performance characteristics of pumps and turbine, the results of turbopump assembly test using real-propellant showed a good agreement with those of the turbopump component tests using simulant working fluid.

Real-Propellant Test of a Turbopump for a 30-Ton Thrust Level of Liquid Rocket Engine (30톤급 액체로켓엔진용 터보펌프 실매질시험)

  • Hong, Soon-Sam;Kim, Dae-Jin;Kim, Jin-Sun;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.359-365
    • /
    • 2008
  • Turbopump test for a 30-ton-thrust liquid rocket engine was carried out using real-propellant. Liquid oxygen, kerosene, cold hydrogen gas were used for the oxidizer pump, the fuel pump, the turbine, respectively. The turbopump was run stably at the design and off-design conditions and the performance requirements were satisfied, which implies that the turbopump development at the engine subsystem level is successfully accomplished in the point of performance validation. This paper presents the results of a test where the turbopump was run for 75 seconds at three operating modes. In terms of performance characteristics of pumps and turbine, the results from turbopump assembly test using real-propellant showed a good agreement with those from the turbopump component tests using simulant working fluid.

  • PDF

Introduction to Construction of a Turbopump Real-Propellant Test Facility (터보펌프 실매질 시험설비 구축에 대한 소개)

  • Kim, Jin-Sun;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.835-840
    • /
    • 2011
  • The development of a turbopump is fundamental to have an independent LRE(liquid rocket engine) for KSLV-II. Recently, the detail design of a turbopump real-propellant test facility based on liquid oxygen and kerosene has been performed to structure the test facility for the experimental validation of the turbopump. In this paper, the design requirements of the turbopump and the specifications of the test facility was presented and the representative sub-facilities were explained on the basis of the design results. Also, the uncertainty of the sub-facilities which could be appeared during the operation was removed in advance through the simulation method and the experimental verification.

  • PDF

Development of a Hydrogen-Peroxide Rocket Engine of l00N Thrust (l00N $H_2O_2$ Monopropellant 로켓 엔진의 개발)

  • Sang-Hee Ahn;S. Krishnan;Choog-Won Lee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.131-134
    • /
    • 2003
  • There has been a renewed interest in the use of hydrogen peroxide as an oxidizer in bipropellant liquid rocket engines as well as in hybrid rocket engines. This is because hydrogen peroxide is a propellant of low toxicity and enhanced versatility. The present paper details the features of the designed engine of l00N thrust and its facility. Also explained is the arrangement of the distillation unit to be used to prepare rocket-grade hydrogen-peroxide propellant. Results of the simulated "cold" tests are presented.

  • PDF

Performance of Flow Rate Control of a Cavitating Venturi (캐비테이션 벤튜리의 유량제어 성능)

  • Cho Won Kook;Moon Yoon Wan;Kim Young-Mog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.146-151
    • /
    • 2002
  • Characteristics of flow rate control has been studied for a cavitating venturi adopted in a liquid rocket propellant feed system. Numerical simulation has been peformed to give about $10\%$ discrepancy of mass flow rate to the experimental data for cavitating flow regime. Mass flow rate is confirmed to be saturated for pressure difference higher than $3\times10^5$pa when the upstream pressure is fixed to $22.8\times10^5$pa and the downstream pressure is varied. The evaporation amount depends substantially to non-condensable gas concentration. However the mass flow rate characteristic is relatively insensitive to the mass fraction of non-condensable gas. So it is reduced by only $2\%$ when the non- condensable gas concentration is increased from 1.5PPM to 150PPM. From the previous comparison the expansions of the non-condensable gas and the evaporation of liquid are verified to have same effect to pressure recovery.

  • PDF