• Title/Summary/Keyword: Liquid Pool

Search Result 161, Processing Time 0.024 seconds

A Study on the Flame Behavior of Whirl Eire and Pool Fire (Whirl Fire와 Pool fire의 화염 거동에 관한 연구)

  • Oh Kyu-Hyung;Kang Youn-Ok;Lee Sung-Eun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.45-50
    • /
    • 2004
  • 4-panel of 1m height and 45cm width were fixed on the $40cm{\times}40cm$ bottom plate and the opening of the panel comer was 5cm. Diameter of stainless vessel is loom and its height is 2cm and it located at the center of the bottom plate. 78mL liquid fuel was filled in the vessel and its depth was 1cm. Flame temperature was measured with K type thermocouple, and radiation heat of flame was measured with heat flux meter. Flame height and its behavior was visualized with video camera. and mass burning rate was measured by fuel combustion time. According to the development of fire, flame swirling was begin. From the experiment the mass burning rate was larger and the height of flame was higher than the usual pool fire flame. Flame temperature and heat flux also increased far more than the pool fire. Consequently the swirling air flow through the openings between the panel and thermal buoyance contribute to increase of heat release rate, flame length and mass burning rate.

Pool Boiling Heat Transfer Coefficients Upto Critical Heat flux (임계 열유속 근방까지의 풀 비등 열전달계수)

  • Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.571-580
    • /
    • 2008
  • In this work, pool boiling heat transfer coefficients(HTCs) of 5 refrigerants of differing vapor pressure are measured on horizontal smooth square surface of 9.52 mm length. Tested refrigerants are R123, R152a, R134a, R22, and R32 and HTCs are taken from $10\;kW/m^2$ to critical heat flux of each refrigerant. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and by thermocouples in the liquid pool. Test results show that pool boiling HTCs of refrigerants increase as the heat flux and vapor pressure increase. This typical trend is maintained even at high heat fluxes above $200\;kW/m^2$. Zuber's prediction equation for critical heat flux is quite accurate showing a maximum deviation of 21% for all refrigerants tested. For all refrigerant data up to the critical heat flux, Stephan and Abdelsalam's well known correlation underpredicted the data with an average deviation of 21.3% while Cooper's correlation overpredicted the data with an average deviation of 14.2%. On the other hand, Gorenflo's and lung et al.'s correlation showed only 5.8% and 6.4% deviations respectively in the entire nucleate boiling range.

Effects of the Width and Location of a Flow Disturbing Plate on Pool Boiling Heat Transfer on a Vertical Tube

  • Kang Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.191-205
    • /
    • 2003
  • Effects of the width and location of a flow disturbing circular plate, installed at a vertical tube surface, on nucleate pool boiling heat transfer of water at atmospheric pressure have been investigated experimentally. Through the tests, changes in the degree of intensity of liquid agitation have been analyzed. The plate changes the fluid flow around the tube as well as heat transfer coefficients on the tube surface. It is identified that the plate width changes the rate of the circulating flow whereas its location changes the growth of the active agitating flow. Moreover, the flow chugging was observed at the downside of the plate.

Pool Boiling Heat Transfer Coefficients of Hydrocarbon Refrigerants on Various Enhanced Tubes (열전달 촉진관에서 탄화수소계 냉매의 풀비등 열전달계수)

  • Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1017-1024
    • /
    • 2006
  • In this work, pool boiling heat transfer coefficients (HTCs) of five hydrocarbon refrigerants of propylene, propane, isobutane, butane and dimethylether (DME) were measured at the liquid temperature of $7^{\circ}C$ on a 26 fpi low fin tube, Turbo-B, and Thermoexcel-E tubes. All data were taken from 80 to $10kW/m^2$ in the decreasing order of heat flux. The data of hydrocarbon refrigerants showed a typical trend that nucleate boiling HTCs obtained on enhanced tubes also increase with the vapor pressure. Fluids with lower reduced pressure such as DME, isobutane, and butane took more advantage of the heat transfer enhancement mechanism of enhanced tubes than those enhancement ratios of $2.3\sim9.4$ among the tubes tested due to its sub-channels and re-entrant cavities.

Effect of surface condition on CHF in pool boiling systems: Research Issues (수조 비등에서 표면 특성이 CHF 에 미치는 영향에 대한 연구 동향 고찰)

  • Yeom, Su-Jin;An, Sang-Mo;Lee, Seung-S.;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2578-2582
    • /
    • 2008
  • In predicting the critical heat flux (CHF) in pool boiling systems, the contact angle between the boiling surface and the liquid and the surface roughness are considered to be the important parameters. From the microscopic viewpoint, those are affected by the micro/nano structure of the surface. Several studies have been reported on the dependence of CHF on the surface microstructure such as height and width of the cavities and distances between them. In this paper, the effects of the boiling surface characteristics on CHF are reviewed and the future research issues are discussed for better prediction of CHF.

  • PDF

Effects of Tube Inclination on Saturated Nucleate Pool Boiling Heat Transfer (튜브 경사각이 포화풀핵비등 열전달에 미치는 영향)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.327-334
    • /
    • 2008
  • Effects of tube inclination on pool boiling heat transfer have been studied for the saturated water at atmospheric pressure. For the analysis, seven inclination angles varying from the horizontal to the vertical and two tube diameters(25.4 and 30.0 mm) are tested. According to the results, inclination angles result in much change on heat transfer. For the same wall superheat(about $5.3^{\circ}C$) the ratio between two heat fluxes for the $45^{\circ}$ inclined and the vertical has the value of more than five when the tube diameter is 25.4mm. As the inclination angle is increasing from the horizontal to the vertical direction heat transfer is gradually increasing because of the increase in liquid agitation. However the detailed tendency depends on the ratio between the tube length and the diameter.

VARIATION OF LOCAL POOL BOILING HEAT TRANSFER COEFFICIENT ON 3-DEGREE INCLINED TUBE SURFACE

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.911-920
    • /
    • 2013
  • Experimental studies on both subcooled and saturated pool boiling of water were performed to obtain local heat transfer coefficients on a $3^{\circ}$ inclined tube of 50.8 mm diameter at atmospheric pressure. The local values were determined at every $45^{\circ}$ from the very bottom to the uppermost of the tube periphery. The maximum and minimum local coefficients were observed at the azimuthal angles of $0^{\circ}$ and $180^{\circ}$, respectively, in saturated water. The locations of the maxima and the minima were dependent on the inclination angle of the tube as well as the degree of subcooling. The major heat transfer mechanisms were considered to be liquid agitation generated by the sliding bubbles and the creation of big size bubbles through bubble coalescence. As a way of quantifying the heat transfer coefficients, an empirical correlation was suggested.

Temperature thread multiscale finite element simulation of selective laser melting for the evaluation of process

  • Lee, Kang-Hyun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.31-51
    • /
    • 2021
  • Selective laser melting (SLM), one of the most widely used powder bed fusion (PBF) additive manufacturing (AM) technology, enables the fabrication of customized metallic parts with complex geometry by layer-by-layer fashion. However, SLM inherently poses several problems such as the discontinuities in the molten track and the steep temperature gradient resulting in a high degree of residual stress. To avoid such defects, thisstudy proposes a temperature thread multiscale model of SLM for the evaluation of the process at different scales. In microscale melt pool analysis, the laser beam parameters were evaluated based on the predicted melt pool morphology to check for lack-of-fusion or keyhole defects. The analysis results at microscale were then used to build an equivalent body heat flux model to obtain the residual stress distribution and the part distortions at the macroscale (part level). To identify the source of uneven heat dissipation, a liquid lifetime contour at macroscale was investigated. The predicted distortion was also experimentally validated showing a good agreement with the experimental measurement.

A Study on Mitigating Accidents for Liquid Hydrogen (액체수소 사고피해 완화기술에 대한 연구)

  • Jo, Young-Do;Kim, Jin-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.29-33
    • /
    • 2012
  • This paper is an attempt to give a concise overview of the state-of-the-art in the recent liquid hydrogen safety researches with unwanted event progress. The vessel of liquified hydrogen may fail and liquid hydrogen spilled. The hydrogen will immediately start to evaporate above a pool and make a hydrogen cloud. The cloud will disperse and can produce a vapor cloud explosion. The vessel containing the liquid hydrogen may not be able to cope with the boil-off due to heat influx, especially in case of a fire, and a BLEVE may occur. In equipment where it exists as compressed gas, a leak generates a jet of gas that can self-ignite immediately or after a short delay and produce a jet flame, or in case it ignites at a source a certain distance from the leak (delayed ignition), a flash fire occurs in the open and with confinement a deflagration or even detonation may develop. The up-to-date knowledge in these events, recent progress and future research are discussed in brief.

Pool Boiling Heat Transfer Coefficient of HFC32/HFC152a on a Plain Surface (평판 표면에서 HFC32/HFC152a 혼합냉매의 풀 비등 열전달계수)

  • Kang, Dong-Gyu;Lee, Yohan;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.9
    • /
    • pp.484-492
    • /
    • 2013
  • Nucleate pool boiling heat transfer coefficients (HTCs) are measured with HFC32/HFC152a mixture at several compositions. All data are taken at the liquid pool temperature of $7^{\circ}C$, on a horizontal plain square surface of $9.53{\times}9.53$ mm, with heat fluxes of 10 $kW/m^2$ to 100 $kW/m^2$ with an interval of 10 $kW/m^2$, in the increasing order of heat flux. Test results show that the HTCs of these mixtures are up to 45% lower than those of the ideal HTCs calculated by a linear mixing rule with pure fluids' HTCs, due to the mass transfer resistance associated with non-azeotropic refrigerant mixtures. Pool boiling data show the deduction in HTCs with an increase in GTD of the mixture. The present mixture data agree well with five well known correlations, within 20% deviation.