• Title/Summary/Keyword: Liquid Liquid Extraction

Search Result 1,075, Processing Time 0.032 seconds

Simultaneous Separation Analysis of Some Metal Ions in Piperidinedothiocarbamate Chelates by Reversed-Phase Liquid Chromatography (역상 액체 크로마토그래피에 의한 몇가지 금속 이온들의 Piperidinedithiocarbamate 킬레이트 동시분리분석)

  • Lee, Won;Bahng, Seung-Hoon;Kim, Mi-Kyoung
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • Simultaneous separation and analysis of Ni(II), Pd(II), Co(II), Cu(II) and Hg(II) in peperidinedithiocarbamate (PDTC) chelates were investigated by reversed phase liquid chromatography. The optimum conditions for the separation of PDTC metal chelates were examined with respect to the pH, extraction solvent, and mobile phase strength on Novapak $C_{18}$ column using methanol/water mixture as mobile phase. All metal PDTC chelates were eluted in an acceptable range of capacity factor value ($0{\leq}log\;k^{\prime}{\leq}1$). The linear calibration curves were obtained in the concentration range of $0{\sim}1.2{\mu}g/mL$ for five metal ions, and also good precision in the range of 1.96~3.41% RSD was obseved. Under the optimum conditions, trace metat ions in the composite water sample were successfully separated and determined with relative error of ${\pm}2.0%$.

  • PDF

Preconcentration and Speciation of Trace Mercury Compounds in Water Sample Using Dithizonates Extraction and Reverse Phase Liquid Chromatography (디티존 착물 추출과 역상 액체 크로마토그래피를 이용한 물시료 중의 미량 수은 화합물의 농축 및 화학종의 분리)

  • Suh, Jung-Ki;Cho, Kyung-Haeng;Lee, Sang-Haak
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2000
  • A rapid preconcentration method was developed for the speciation of the trace mercury compounds in water sample. The mercury compounds were extracted and preconcentrated simply as their dithizone complexes by passing through the dithizone impregnated ultra-high molecular weight polyethylene (UHMWPE) membrane solvent inlet filter following sanification in methanol solvent. The concentrated dithizonates were separated by liquid chromatography on a $C_{18}$ column. Complete resolution was obtained between methyl-, ethyl-, phenyl-, and inorganic mercury with a mobile phase of 0.05 M acetate buffer (pH=4)/THF/methanol(3:5:2). The separnted mercury chelates were detected by spectrophotometrically at 475 nm. The proposed method was successfully applied to the speciation of mercury compounds in waste water with detection limit at the subnanogram/mL level.

  • PDF

Antioxidative Activity of Some Solvent Extract from Caesalpinia sappan L. (소목 추출물의 항산화 효과)

  • Lim, Dae-Kwan;Choi, Ung;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.77-82
    • /
    • 1996
  • Antioxidative activity of the extract from Caesalpinia sappan L. by various solvent was compared with several commercial antioxidants, using the Rancimat method. AI (antioxidative index; induction period of oil containing extract/induction period of control oil) of all extracts were higher than commercial antioxidants, such as BHA, ${\delta}-tocopherol$ and ascorbic acid. The ethanol extract was fractionated by liquid liquid extraction. Ethyl acetate fraction showed higher AI than the whole crude extract. When comparing POV and TBA value of palm oil and lard containing different level of each fraction, the oxidative stability of ethyl acetate fraction at 200 ppm level on palm oil and lard were similar to that of BHT at 200 ppm level, and better than BHA, ${\delta}-tocopherol$ and control.

  • PDF

Determination of methamphetamine and amphetamine enantiomers in human urine by chiral stationary phase liquid chromatography-tandem mass spectrometry

  • Sim, Yeong Eun;Ko, Beom Jun;Kim, Jin Young
    • Analytical Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.163-172
    • /
    • 2019
  • Methamphetamine (MA) is currently the most abused illicit drug in Korea and its major metabolite is amphetamine (AP). As MA exist as two enantiomers with the different pharmacological properties, it is necessary to determine their respective amounts in a sample. Thus a chiral stationary phase liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed for identification and quantification of d-MA, l-MA, d-AP, and l-AP in human urine. Urine sample ($200{\mu}L$) was diluted with pure water and purified using solid-phase extraction (SPE) cartridge. A $5-{\mu}L$ aliquot of SPE treated sample solution was injected into LC-MS/MS system. Chiral separation was carried out on the Astec Chirobiotic V2 column with an isocratic elution for each enantiomer. Identification and quantification of enantiomeric MA and AP was performed using multiple reaction monitoring (MRM) detection mode. Linear regression with a $1/x^2$ as the weighting factor was applied to generate a calibration curve. The linear ranges were 25-1000 ng/mL for all compounds. The intra- and inter-day precisions were within 3.6 %, while the intra- and inter-day accuracies ranged from -5.4 % to 11.8 %. The limits of detection were 2.5 ng/mL (d-MA), 3.5 ng/mL (l-MA), 7.5 ng/mL (d-AP), and 7.5 ng/mL (l-AP). Method validation parameters such as selectivity, matrix effect, and stability were evaluated and met acceptance criteria. The applicability of the method was tested by the analysis of genuine forensic urine samples from drug abusers. d-MA is the most common compound found in urine and mainly used by abusers.

Comparison of sample preparation methods for quantification of febantel, an anthelmintic agent, and its metabolites in rockfish (Sebastes schlegeli) muscle using liquid chromatography-tandem mass spectrometry (LC-MS/MS를 이용한 조피볼락 근육에서 구충제 febantel 및 그 대사체들의 정량분석을 위한 시료 전처리 방법의 비교 분석)

  • Lim, Jae-Woong;Kwon, Inyeong;Kim, Taeho;Kim, Wi-Sik;Kang, So Young
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.261-269
    • /
    • 2021
  • This study presents the evaluation of sample extraction and purification procedure for the determination of residues of febantel and its metabolites, fenbendazole, oxfendazole and oxfendazole sulfone in rockfish (Sebastes schlegeli) muscle using liquid chromatography-tandem mass spectrometry. Residues of febantel and its metabolites in rockfish muscle were analyzed using each different sample preparation method from Korean Food Standards Codex (KFSC), Food Safety and Inspection Service (FSIS, USA), and the modified FSIS method using QuEChERS kit (FSIS-Q), respectively. Each method was compared for mean recoveries and repeatabilities. Since FSIS-Q showed higher repeatabilities (coefficient of variation, CV of 2.4%~10.9%) than those of FSIS method (CV of 4.6%~17.5%), recoveries from FSIS-Q were compared with those from KFSC method. FSIS-Q showed significantly higher recoveries of 83.1%~110.1% (P < 0.05) than those from KFSC method of 64.7%~107.4%. In addition, FSIS-Q showed a good linearity over the range of 2.5~200 ㎍/kg, and excellent sensitivities with limit of detection of 0.46~0.71 ㎍/kg and limit of quantification of 1.08~2.15 ㎍/kg. Although all the sample preparation methods turned out to be able to meet CODEX guideline for all the compounds, FSIS method and FSIS-Q validated in this study could be applied to screening and quantification for residues of febantel and its metabolites in rockfish muscle with efficient preparation procedures.

Evaluation of Matrix Effects in Quantifying Microbial Secondary Metabolites in Indoor Dust Using Ultraperformance Liquid Chromatographe-Tandem Mass Spectrometer

  • Jaderson, Mukhtar;Park, Ju-Hyeong
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.196-204
    • /
    • 2019
  • Background: Liquid chromatography-tandem mass spectrometry (LC-MSMS) for simultaneous analysis of multiple microbial secondary metabolites (MSMs) is potentially subject to interference by matrix components. Methods: We examined potential matrix effects (MEs) in analyses of 31 MSMs using ultraperformance LC-MSMS. Twenty-one dust aliquots from three buildings (seven aliquots/building) were spiked with seven concentrations of each of the MSMs ($6.2pg/{\mu}l-900pg/{\mu}l$) and then extracted. Another set of 21 aliquots were first extracted and then, the extract was spiked with the same concentrations. We added deepoxy-deoxynivalenol (DOM) to all aliquots as a universal internal standard. Ten microliters of the extract was injected into the ultraperformance LC-MSMS. ME was calculated by subtracting the percentage of the response of analyte in spiked extract to that in neat standard from 100. Spiked extract results were used to create a matrix-matched calibration (MMC) curve for estimating MSM concentration in dust spiked before extraction. Results: Analysis of variance was used to examine effects of compound (MSM), building and concentration on response. MEs (range: 63.4%-99.97%) significantly differed by MSM (p < 0.01) and building (p < 0.05). Mean percent recoveries adjusted with DOM and the MMC method were 246.3% (SD = 226.0) and 86.3% (SD = 70.7), respectively. Conclusion: We found that dust MEs resulted in substantial underestimation in quantifying MSMs and that DOM was not an optimal universal internal standard for the adjustment but that the MMC method resulted in more accurate and precise recovery compared with DOM. More research on adjustment methods for dust MEs in the simultaneous analyses of multiple MSMs using LC-MSMS is warranted.

Characterization of quercetin and its glycoside derivatives in Malus germplasm

  • Zhang, Lei;Xu, Qipeng;You, Yaohua;Chen, Weifeng;Xiao, Zhengcao;Li, Pengmin;Ma, Fengwang
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.909-917
    • /
    • 2018
  • Quercetin and its glycoside derivatives were identified and quantified using high-performance liquid chromatograph (HPLC) and liquid chromatograph/mass spectrometer/mass spectrometer (LC/MS/MS) in the leaves, flowers, and fruits of 22 Malus genotypes. In all genotypes, small amounts of quercetin aglycone were present, with water-soluble glycoside forms were the most abundant in different Malus plant tissues, including quercetin-3-galactoside, quercetin-3-rutinoside, quercetin-3-glucoside, quercetin-3-xyloside, quercetin-3-arabinoside, and quercetin-3-rhamnoside. Among these six quercetin glycosides, quercetin-3-galactoside was the common form in Malus plants, except in the leaves and flowers of M. ceracifolia and M. magdeburgensis, and in the fruits of M. micromalus 'Haihong Fruit', where there was a higher concentration of quercetin3-glucoside. Among the different tissues tested, leaves contained the highest concentration of quercetin and its glycosides, while fruits contained the lowest concentrations of these compounds. Among the genotypes we analyzed, no specific genotype consistently contained the highest concentration of quercetin and its glycoside derivatives. M. domestica 'Honeycrisp' had the highest total compound concentration (approximately $1600mg\;kg^{-1}$), whereas M. hupehensis contained the lowest in its fruits. In contrast, the concentration of total quercetin and its glycosides was more than $5000mg\;kg^{-1}$ in the leaves of eight genotypes and greater than $2500mg\;kg^{-1}$ in the flowers of seven species. In general, the concentration of quercetin and its glycoside derivatives depended on the species and tissue type. These results may provide useful information for the evaluation and selection of edible Malus fruits and the materials for quercetin glycoside extraction.

Evaluation of Toxicity of Paper Mill Sludge to Honey Bees and Analysis of Volatile Organic Compounds

  • Bisrat, Daniel;Ulziibayar, Delgermaa;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.34 no.4
    • /
    • pp.315-323
    • /
    • 2019
  • Large amounts of sludge produced by paper mill industries represent one of the most serious environmental problems in the world. Recently, beekeepers living in the neighborhood of the paper mill in Hwasan County, Youngcheon city, GB, Korea, became alarmed that honey bee colonies were dying off suddenly across the neighborhood. A preliminary study was conducted to evaluate the toxicity (oral, fumigation, repellent) of recycled solid paper mill sludge (SPMS) and leachate paper mill sludge (LPMS) to honey bee workers under laboratory conditions, and to analyze the volatile organic compounds(VOC). The SPMS and LPMS were separately subjected to a liquid-liquid extraction (LLE) at three temperatures to extract VOC(highest VOC yields: 1.52% SPMS and 0.34% LPMS). A total of 70 chemicals were detected in the VOC of paper mill sludges, of which 49 and 21 volatile organic compounds from SPMS and LPMS, respectively. The SPMS was dominated by high degree presence of stanols (saturated sterols), such as cholestanol, cholestan-3-ol and also saturated hydrocarbons. However, LPMS was characterized by the absence of sterols. Both SPMS and LPMS showed an influence on the olfactory behavior of honey bee on Y-tube assay, with repulsion rates of 72 and 68%, respectively. Both SPMS and LPMS at concentration of 100mg/mL caused higher honey bee oral mortality than the untreated controls at 48, 72, 96 and 120 hours after treatment(highest oral mortality at 120 hr: 85.74%(SPMS); 93.51 % (LPMS)). A similar pattern was observed when honey bees were tested to fumigant toxicity. Both SPMS and LPMS caused significant higher mortality than the untreated control 24 hour after the exposure (highest fumigation mortality at 120 hr: 69.4% (SPMS); 56.8% (LPMS)). These preliminary results indicated that paper mill sludge could be partly responsible for sudden death and disappearance of honey bees, especially in hot humid summer days. With climate change, the risk of environmental chemical exposure to honey bee would pose greater attention.

Multi-Residue Analysis of Fipronil and Its Metabolites in Eggs by SinChERS-Based UHPLC-MS/MS

  • Han, Keguang;Hua, Jin;Zhang, Qi;Gao, Yuanhui;Liu, Xiaolin;Cao, Jing;Huo, Nairui
    • Food Science of Animal Resources
    • /
    • v.41 no.1
    • /
    • pp.59-70
    • /
    • 2021
  • A method for simultaneous detection of fipronil (F) and its metabolites fipronil desulfinyl (FD), fipronil sulfide (FS), fipronil sulfone (FSO) in chicken eggs was applied and validated. It includes single-step, cheap, effective, rugged, safe-based method (SinChERS) for sample preparation and ultra high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS) for chemical analysis. Results suggested that formic acid enhanced the recovery of 4 target residues and 1% supplementation to acetonitrile gained higher recoveries than that of 5%. SinChERS integrated extraction and clean-up steps into one, with shorter time (1.5 h) to operate and higher recoveries (97%-100%) than HLB, Envi-Carb-NH2 and quik-easy-cheap-effective-rugged-safe method (QuEChERS), and it consumed the smallest volume of extracting solvent (10 mL) as QuEChERS. Quantitative analyses using external standard method suggested the linear ranges of 4 target compounds were 1-20 ㎍/L with R2 >0.9947. The limit of detection (S/N>3) and quantification (S/N>10) were 0.3 ㎍/kg and 1 ㎍/kg. Recoveries ranged from 89.0% to 104.4%, and the relative standard deviations (n=6) at 1, 10, and 20 ㎍/kg were lower than 6.03%. Thirty batches of domestic eggs (500 g each) were detected by the established SinChERS-based UHPLC-MS/MS and no target residues were detected in all samples. The method developed in this study is a rapid, sensitive, accurate and economic way for multi-residue analysis of fipronil and its metabolites in eggs.

Enhanced Large-Scale Production of Hahella chejuensis-Derived Prodigiosin and Evaluation of Its Bioactivity

  • Jeong, Yu-jin;Kim, Hyun Ju;Kim, Suran;Park, Seo-Young;Kim, HyeRan;Jeong, Sekyoo;Lee, Sang Jun;Lee, Moo-Seung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1624-1631
    • /
    • 2021
  • Prodigiosin as a high-valued compound, which is a microbial secondary metabolite, has the potential for antioxidant and anticancer effects. However, the large-scale production of functionally active Hahella chejuensis-derived prodigiosin by fermentation in a cost-effective manner has yet to be achieved. In the present study, we established carbon source-optimized medium conditions, as well as a procedure for producing prodigiosin by fermentation by culturing H. chejuensis using 10 L and 200 L bioreactors. Our results showed that prodigiosin productivity using 250 ml flasks was higher in the presence of glucose than other carbon sources, including mannose, sucrose, galactose, and fructose, and could be scaled up to 10 L and 200 L batches. Productivity in the glucose (2.5 g/l) culture while maintaining the medium at pH 6.89 during 10 days of cultivation in the 200 L bioreactor was measured and increased more than productivity in the basal culture medium in the absence of glucose. Prodigiosin production from 10 L and 200 L fermentation cultures of H. chejuensis was confirmed by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses for more accurate identification. Finally, the anticancer activity of crude extracted prodigiosin against human cancerous leukemia THP-1 cells was evaluated and confirmed at various concentrations. Conclusively, we demonstrate that culture conditions for H. chejuensis using a bioreactor with various parameters and ethanol-based extraction procedures were optimized to mass-produce the marine bacterium-derived high purity prodigiosin associated with anti-cancer activity.