• Title/Summary/Keyword: Liquid Electrolyte

Search Result 257, Processing Time 0.025 seconds

Identification and Biological Activity of Two New Phytotoxins Isolated from Botrytis cinerea (Botrytis cinerea로부터 분리한 두 개의 새로운 phytotoxin의 구조 결정 및 생물활성)

  • Kim, Geum-Jung;Yoon, Mi-Young;Kim, Heung-Tae;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Park, Myung-Soo;Cha, Byeong-Jin;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.15 no.2
    • /
    • pp.112-119
    • /
    • 2009
  • We discovered two novel phytotoxins produced by the pathogenic fungus, Botrytis cinerea. Among the twenty-five B. cinerea isolates, which were obtained from various host plants in 1994 and 1996, twenty-two showed strong or moderate pathogenicity on five plants such as cucumber, tomato, red pepper, tobacco and Chinese cabbage. The culture filtrate of the B. cinerea 2-16 strain showed the most potent phytotoxic activity in a tobacco leaf-wounding assay. Two novel phytotoxins were isolated from the liquid cultures of B. cinerea 2-16 by ethyl acetate extraction, flash silica gel column chromatography, silica gel column chromatography, Sephadex LH-20 column chromatography, preparative TLC and subsequently preparative HPLC. Their chemical structures were determined to be 3-O-acetyl botcinol and 3-O-acetyl botcinolide, respectively, by mass and NMR spectral analyses. These two phytotoxins caused leaf necrosis in a leaf-wounding bioassay, and significant electrolyte leakage from leaf tissues of tobacco. In the two bioassays tested, 3-O-acetyl botcinol exhibited stronger phytotoxic activity than 3-O-acetyl botcinolide. This is the first report on the production of both 3-O-acetyl botcinol and 3-O-acetyl botcinolide from B. cinerea.

Characteristics of Copper Vanadium Oxide$(Cu_{0.5}V_2O_5)$ Cathode for Thin Film Microbattery (구리-바나듐 산화물 박막의 양극 특성 및 전 고상 전지의 제작)

  • Lim Y. C.;Nam S. C.;Park H. Y.;Yoon Y. S.;Cho W. I.;CHo B. W.;Chun H. S.;Yun K. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.219-223
    • /
    • 2000
  • All-solid state lithium rechargeable thin film batteries were fabricated with the configuration of$Cu_{0.5}V_2O_5/Lipon/Li$ using sequential thin film techniques. Copper vanadium oxide thin films and Lipon thin films were prepared by DC reactive dual source magnetron sputtering and RF magnetron sputtering, respectively. According to XRD analysis, we found out that copper vanadium oxide thin films were amorphous. The electrochemical behaviour of them was examined in half cell system using EC : DMC(1:1 in IM $LiPF_5$) liquid electrolyte. The ionic conductivity of Lipon thin film was $1.02\times10^{-6}S/cm$ at $25^{\circ}C$ and $Cu_{0.5}V_2O_5/Lipon/Li$ cell showed that the discharge capacity was about $50{\mu}Ah/cm^2{\mu}m$ beyond 500cyc1es.

Analysis of Electrochemical Characteristics of the Rechargeable $LiMn_2O_4$ Thin Film Battery (재충전이 가능한 박막전자용 $LiMn_2O_4$ 박막 전지의 전기화학 특성 분석)

  • Kim Joo-Seok;Jung Hunjoon;Kim Chan-Soo;Joo Seung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.131-135
    • /
    • 2000
  • In order to investigate the origin of capacity fading with charge/discharge cycling in $LiMn_2O_4$ thin film battery, impedance studies have been performed with increasing cycling in $LiMn_2O_4/1M\;LiClO_4-PC/Li$ cells. The fitted values obtained from impedance data show good agreements with the experimental results. Especially, the element of charge transfer resistance of $LiMn_2O_4/liquid$ electrolyte interface initially increased, and then saturated with increasing the charge/discharge cycles, which could explain the cause of initial abrupt capacity fading of $LiMn_2O_4$ thin film with cycling due to interfacial reaction. The steady capacity fading is caused by the increasing of Warburg resistance. The chemical diffusion coefficient of Li ions decreased from $5.15\times10^{-11}cm^2/sec$ at 1st cycles to $6.3\times10^{-12}cm^2/sec$ at 800th cycles, which attributed to the Jahn-Teller distortion/Mn dissolution which diminishes tetra hedral sites necessary for Li diffusion in $LiMn_2O_4$.

Current Status and Future Research Directions of Separator Membranes for Lithium-Ion Rechargeable Batteries (리튬이차전지용 분리막 이해 및 최신 연구 동향)

  • Kim, Jung-Hwan;Lee, Sang-Young
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.337-350
    • /
    • 2016
  • Lithium-ion rechargeable batteries (LIBs) have garnered increasing attention with the rapid advancements in portable electronics, electric vehicles, and grid-scale energy storage systems which are expected to drastically change our future lives. This review describes a separator membrane, one of the key components in LIBs, in terms of porous structure and physicochemical properties, and its recent development trends are followed. The separator membrane is a kind of porous membrane that is positioned between a cathode and an anode. Its major functions involve electrical isolation between the electrodes while serving as an ionic transport channel that is filled with liquid electrolyte. The separator membranes are not directly involved in redox reactions of LIBs, however, their aforementioned roles significantly affect performance and safety of LIBs. A variety of research approaches have been recently conducted in separator membranes in order to further reinforce battery safeties and also widen chemical functionalities. This review starts with introduction to commercial polyolefin separators that are currently most widely used in LIBs. Based on this understanding, modified polyolefin separators, nonwoven separators, ceramic composite separators, and chemically active separators will be described, with special attention to their relationship with future research directions of advanced LIBs.

Effect of Precipitation on Operation Range of the CO2 Capture Process using Ammonia Water Absorbent (암모니아수 흡수제를 이용한 이산화탄소 제거 공정에서 침전생성이 조업영역에 미치는 영향)

  • You, Jong Kyun;Park, Ho Seok;Hong, Won Hi;Park, Jongkee;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.258-263
    • /
    • 2007
  • Ammonia water was investigated as a new absorbent of the chemical absorption process for the removal of $CO_2$ in flue gas. The suitable range of ammonia water concentration and $CO_2$ loading ($mol\;CO_2/mol\;NH_3$) were decided in the point of view of $CO_2$ absorption capacity and $NH_4HCO_3$ precipitation. The absorption capacity of $CO_2$ and the precipitation of $NH_4HCO_3$ in liquid phase were calculated by the Pitzer model for electrolyte solution. The $CO_2$ absorption capacity of the ammonia water over $5\;molNH_3/kgH_2O$ was higher than that of conventional amine absorbent. The $CO_2$ loadings where precipitation occurred were decided at various absorbent concentrations. Theses values were higher than 0.5 in the concentration range of $5-14\;molNH_3/kgH_2O$ at 293, 313 K. The absorber for the removal of $CO_2$ in flue gas could be operated without $NH_4HCO_3$ precipitation by using high concentration of ammonia water below these $CO_2$ loading values. The optimum temperature of the ammonia water absorbent for removal of $CO_2$ in flue gas was 297-312 K depending on the concentration of ammonia water.

A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries (전고체전지용 황화물 고체전해질 습식 합성기술 동향)

  • Ha, Yoon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.95-104
    • /
    • 2022
  • The development of non-flammable all-solid-state batteries (ASSLBs) has become a hot topic due to the known drawbacks of commercial lithium-ion batteries. As the possibility of applying sulfide solid electrolytes (SSEs) for electric vehicle batteries increases, efforts for the low-cost mass-production are actively underway. Until now, most studies have used high-energy mechanical milling, which is easy to control composition and impurities and can reduce the process time. Through this, various SSEs that exceed the Li+ conductivity of liquid electrolytes have been reported, and expectations for the realization of ASSLBs are growing. However, the high-energy mechanical milling method has disadvantages in obtaining the same physical properties when mass-produced, and in controlling the particle size or shape, so that physical properties deteriorate during the full process. On the other hand, wet chemical synthesis technology, which has advantages in mass production and low price, is still in the initial exploration stage. In this technology, SSEs are mainly manufactured through producing a particle-type, solution-type, or mixed-type precursor, but a clear understanding of the reaction mechanism hasn't been made yet. In this review, wet chemical synthesis technologies for SSEs are summarized regarding the reaction mechanism between the raw materials in the solvent.

Theoretical Study on Optimal Conditions for Absorbent Regeneration in CO2 Absorption Process (이산화탄소 흡수 공정에서 흡수액 최적 재생 조건에 대한 이론적 고찰)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1002-1007
    • /
    • 2012
  • The considerable portion of energy demand has been satisfied by the combustion of fossil fuel and the consequent $CO_2$ emission was considered as a main cause of global warming. As a technology option for $CO_2$ emission mitigation, absorption process has been used in $CO_2$ capture from large scale emission sources. To set up optimal operating parameters in $CO_2$ absorption and solvent regeneration units are important for the better performance of the whole $CO_2$ absorption plant. Optimal operating parameters are usually selected through a lot of actual operation data. However theoretical approach are also useful because the arbitrary change of process parameters often limited for the stability of process operation. In this paper, a theoretical approach based on vapor-liquid equilibrium was proposed to estimate optimal operating conditions of $CO_2$ absorption process. Two $CO_2$ absorption processes using 12 wt% aqueous $NH_3$ solution and 20 wt% aqueous MEA solution were investigated in this theoretical estimation of optimal operating conditions. The results showed that $CO_2$ loading of rich absorbent should be kept below 0.4 in case of 12 wt% aqueous $NH_3$ solution for $CO_2$ absorption but there was no limitation of $CO_2$ loading in case of 20 wt% aqueous MEA solution for $CO_2$ absorption. The optimal regeneration temperature was determined by theoretical approach based on $CO_2$ loadings of rich and lean absorbent, which determined to satisfy the amount of absorbed $CO_2$. The amount of heating medium at optimal regeneration temperature is also determined to meet the difference of $CO_2$ loading between rich and lean absorbent. It could be confirmed that the theoretical approach, which accurately estimate the optimal regeneration conditions of lab scale $CO_2$ absorption using 12 wt% aqueous $NH_3$ solution could estimate those of 20 wt% aqueous MEA solution and could be used for the design and operation of $CO_2$ absorption process using chemical absorbent.