• Title/Summary/Keyword: Liquid Column Region

Search Result 23, Processing Time 0.031 seconds

Narrowbore high-performance liquid chromatographic method for the determination of cetirizine in plasma using column switching

  • Hyun, Myung-Ja;Ban, Eunmi;Woo, Jong-Soo;Kim, Chong-Kook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.398.2-398.2
    • /
    • 2002
  • A column switching HPLC assay was developed to allow the separation and quantitation of cetirizine in human plasma by ultraviolet (UV) detection. Plasma samples were prepared by liquid-liquid extraction. After drying, the residue was reconstituted in 20 mM phosphate buffer (pH 2.8) containing 15% acetonitrile. The samples were initially injected onto a clean-up Capcell Pak MF C18 column. (50 mm $\times$ 4.6 mm I.D.), and the chromatographic region containing the peaks of interest was followed in an analytical C18 microcolumn (250 mm$\times$1.5 mm I. D.) via column switching device. (omitted)

  • PDF

Effects of Angled Injection on the Spray Characteristics of Liquid Jets in Subsonic Crossflow (아음속 수직분사제트에서 분사각도 영향에 대한 분무특성 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Lee, Jang-Su;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.166-174
    • /
    • 2009
  • The liquid column trajectory and column breakup length characteristics have been experimentally studied in angled jets injected into subsonic crossflow. Pulsed shadowgraph photography and Planar Liquid Laser Induced Fluorescence measurements were used to determine the angled effects. And the main objectives of this research are to get a empirical formula of liquid column trajectory and breakup length with below the $90^{\circ}$ degree injection angle conditions, and were compared with previous results. It was also found that the empirical formula, which reversed injection conditions of air stream. As the result, This has been shown that liquid column trajectories and column breakup length were spatially dependent on various injection angle, normalized injector exit diameter, air-stream and fuel injection velocity. Furthermore, the empirical formula of liquid column trajectories and breakup length has been some different of drag coefficient results between normal angled injection and reversed injection in subsonic crossflow.

The Effect of Cross-flow on Liquid Atomization (횡단유동이 액체 미립화에 미치는 영향)

  • Kim, Jong-Hyun;Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Soo;Koo, Ja-Ye
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.87-92
    • /
    • 2008
  • The breakup processes and spray plume characteristics of liquid jets injected in subsonic air cross-flows were experimentally studied. The behaviors of column, penetration, breakup of plain liquid jet and droplet sizes, velocities have been studied in non-swirling cross-flow of air. Nozzle has a 1.0 mm diameter and Lid ratio=5. Experimental results indicate that the breakup point is delayed by increasing air momentum, the penetration decreases by increasing Weber number and the split angle is increased by increasing air velocity or decreasing injection velocity. SMD increases according as increasing height or decreases in accordance with increasing air velocity. This phenomenon is related to the momentum exchange between column waves and cross-flow stream. Droplet vector velocities were varied from 11.5 to 33 m/s. A higher-velocity region can be identified in down edge region at Z/d=40, 70 and 100. Lower-velocity region were observed on bottom position of the spray plume.

An Experimental Study on the Trajectory Characteristics of Liquid Jet with Canted Injection Angles in Crossflow (수직분사제트에서 다양한 분사각도의 분무궤적 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.38-47
    • /
    • 2008
  • The liquid column and spray trajectory have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle were varied to provide of jet operation conditions. The Pulsed Shadowgraph Photography and Planar Liquid Laser Induced Fluorescence technique was used to determine the injection characteristics in a subsonic crossflow of air. And the mainly objectives of this research was to get a empirical formula of liquid column and spray region trajectory with forward and reversed injection of air stream. As the result, This research has been shown that each trajectories were spatially dependent on air-stream velocity, fuel injection velocity, various injection angle, and normalized injector exit diameter. Furthermore, the empirical formula of liquid column trajectories has been some different of drag coefficient results between forward and reversed angled injection.

Atomizing Characteristics of Coaxial Porous Injectors (다공성재를 이용한 동축형 분사기의 미립화특성)

  • Kim, Do-Hun;Shin, Jeung-Hwan;Lee, In-Chul;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • To improve the mixing and atomizing performance at the center region of the conventional coaxial shear injector spray, the concept of a coaxial porous injector was invented. This novel injection concept for liquid rocket engines utilizes the Taylor-Culick flow in the cylindrical porous tube. The 2-dimensional injector, which can be converted in three injection configurations, was fabricated, and several cold flow tests using water-air simulant propellant was performed. The hydraulic characteristics and the effects of a gas flow condition on the spray pattern and the Sauter mean diameter (SMD) was analyzed for each configuration. The atomizing mechanism of coaxial porous injector was different with the coaxial shear injector, and it was explained by the momentum of the gas jet, which is injected normally against the center liquid column, and by the secondary disintegration at the wavy interface of liquid jet, which was generated at the recessed region. The SMD of 2D coaxial porous injector, which has higher gas momentum, was measured and it shows better atomizing performance at the center and outer side of spray than the 2D coaxial shear injector.

The Detection of Aflatoxin in Home-made Takju and Peanut butter (자가탁주와 땅콩버터에 대한 Aflatoxins 오염도의 검색)

  • 오유진;윤여표;여신구;홍진태
    • Journal of Food Hygiene and Safety
    • /
    • v.1 no.2
    • /
    • pp.171-176
    • /
    • 1986
  • ABSTRACT-In order to detect the aflatoxins in home-made Takju and peanut butter, the samples were collected in Chungbuk region and cleaned up Sep-pak silica cartridge. Aflatoxins were detected by thin layer chromatographic and high performance liquid chromatographic behavior. Determination was carried out by thin layer densitometer. The results were as follows; 1. Aflatoxin B, was detected in 78% of the home-made Takju, and the highest concentration was 1.2 ppb and average 0.36 ppb. 2. Aflatoxins were not detected in any peanut butter smaples. 3. Clean-up method by Sep-pak silica cartridge was more efficient and economical than column chromatography of AOAC method.method.

  • PDF

Spray characteristics on mixing region scale of twin fluid atomizer (이류체 분사노즐의 혼합영역 형상에 따른 분무특성)

  • 김병문;김혁주;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2147-2159
    • /
    • 1991
  • The effects of principal dimensions of internal mixing twin-fluid atomized and operating conditions on the atomizing characteristics are experimentally investigated. The tests are conducted over the wide range of air/liquid ratio to predict influences of the diameter and length of nozzle, contacting angle between air and liquid in the mixing chamber, and air orifice diameter on the mean drop size(SMD), spray angle, distribution of drop size, and spray dispersion, And also, initial distribution of liquid column by air stream within the mixing chamber are observed through the transparent nozzles. A He-Ne laser particle sizer(MALVERN Model 2604) was used to measure the Sauter.s mean diameter( $D_{321}$) and droplet sizes distribution. In this experiment the air/liquid ratio, mixing length and nozzle diameter have a great influence on SMD, spray angle, droplet sizes distribution and spray dispersion.

Estimation of Moisture Diffusivity during Absorption by Boltzmann Transformation Method (Boltzmann법에 의한 목재 흡수시 확산계수 추정)

  • Kang, Wook;Chung, Woo Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Although the exterior wood such as column may frequently contact with liquid water, little work has been found to measure liquid water absorption in wood. To investigate the moisture diffusivity of wood in the longitudinal direction including bound water and free water movement, liquid water absorption test was conducted at the room temperature. The order of magnitude for absorption coefficient and diffusivity was Japanese elm, horn beam, hemlock, spruce, radiata pine, and painted maple. The Boltzmann transformation method was used to determine the diffusivity from measured moisture content distributions in the absorption test. The shape of the curve representing the dependence of diffusivity with moisture content was similar in test samples. The diffusivity decreased with increasing moisture content until around the fiber saturation point and then increased at the nonhygroscopic region, which ranged from $10^{-10}$ to $10^{-7}m^2/s$.

Study for Residue Analysis of Fluxametamid in Agricultural Commodities

  • Kim, Ji Young;Choi, Yoon Ju;Kim, Jong Soo;Kim, Do Hoon;Do, Jung Ah;Jung, Yong Hyun;Lee, Kang Bong;Kim, Hyochin
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • BACKGROUND: Accurate and simple analytical method determining Fluxametamid residue was necessary in various food matrices. Additionally, fulfilment of the international guideline of Codex (Codex Alimentarius Commission CAC/GL 40) was required for the analytical method. In this study, we developed Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) method to determine the Fluxametamid residue in foods. METHODS AND RESULTS: Fluxametamid was extracted with acetonitrile, partitioned and concentrated with dichloromethane. To remove the interferences, silica SPE cartridge was used before LC-MS/MS (Liquid Chromatography-Tandem Mass Spectrometry) analysis with $C_{18}$ column. Five agricultural commodities (mandarin, potato, soybean, hulled rice, and red pepper) were used as a group representative to verify the method. The liner matrix-matched calibration curves were confirmed with coefficient of determination ($r^2$) greater than 0.99 at calibration range of 0.001-0.25 mg/kg. The limits of detection and quantification were 0.001 and 0.005 mg/kg, respectively. Mean average accuracies were shown to be 82.24-115.27%. The precision was also shown to be less than 10% for all five samples. CONCLUSION: The method investigated in this study was suitable to the Codex guideline for the residue analysis. Thus, this method can be useful for determining the residue in various food matrices as routine analysis.

Droplet Sizes and Velocities from Single-Hole Nozzle in Transversing Subsonic Air-stream (아음속 횡단류에 수직 분사되는 분무의 액적크기 및 속도 분포 특성)

  • Lee, In-Chul;Cho, Woo-Jin;Lee, Bong-Su;Kim, Jong-Hyun;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.106-109
    • /
    • 2007
  • The spray plume characteristics of liquid water jet injected into subsonic cross-flow at 42 m/s were experimentally investigated. Nozzle has a 1.0 m diameter and L/D=5. Droplet sizes, velocities, volume flux were measured at each downstream area of the injector exit using phase Doppler particle anemometry. Measuring probe position is moved with 3-way transversing machine. Experimental results indicate that SMD is varied from 75 to $120{\mu}m$ distribution and it is uncertain layer structure. SMD peaks at the top of the spray plume. This phenomenon is related to the momentum exchange between column waves and cross-flow stream. Droplet vector velocities were varied from 11.5 to 33 m/s. A higher-velocity region can be identified in down edge region at Z/D : 40, 70 and 100. Lower-velocity region were observed on bottom position of the spray plume. Volume flux is a criterion to the droplet concentration. All volume flux distribution has a same structure that continuously decreases from the center region to the edge of the plume. Z/D : 20 is spatially less concentrated than in Z/D : 100.

  • PDF