• Title/Summary/Keyword: Liquid Charge

Search Result 242, Processing Time 0.029 seconds

Improving Power Conversion Efficiency and Long-term Stability Using a Multifunctional Network Polymer Membrane Electrolyte; A Novel Quasi-solid State Dye-sensitized Solar Cell

  • Gang, Gyeong-Ho;Gwon, Yeong-Su;Song, In-Yeong;Park, Seong-Hae;Park, Tae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.484.2-484.2
    • /
    • 2014
  • There are many efforts to improving the power conversion efficiencies (PCEs) of dye-sensitized solar cells (DSCs). Although DSCs have a low production cost, their low PCE and low thermal stability have limited commercial applications. This study describes the preparation of a novel multifunctional polymer gel electrolyte in which a cross-linking polymerization reaction is used to encapsulate $TiO_2$ nanoparticles toward improving the power conversion efficiency and long-term stability of a quasi-solid state DSC. A series of liquid junction dye-sensitized solar cells (DSCs) was fabricated based on polymer membrane encapsulated dye-sensitized $TiO_2$ nanoparticles, prepared using a surface-induced cross-linking polymerization reaction, to investigate the dependence of the solar cell performance on the encapsulating membrane layer thickness. The ion conductivity decreased as the membrane thickness increased; however, the long term-stability of the devices improved with increasing membrane thickness. Nanoparticles encapsulated in a thick membrane (ca. 37 nm), obtained using a 90 min polymerization time, exhibited excellent pore filling among $TiO_2$ particles. This nanoparticle layer was used to fabricate a thin-layered, quasi-solid state DSC. The thick membrane prevented short-circuit paths from forming between the counter and the $TiO_2$ electrode, thereby reducing the minimum necessary electrode separation distance. The quasi-solid state DSC yielded a high power conversion efficiency (7.6/8.1%) and excellent stability during heating at $65^{\circ}C$ over 30 days. These performance characteristics were superior to those obtained from a conventional DSC (7.5/3.5%) prepared using a $TiO_2$ active layer with the same thickness. The reduced electrode separation distance shortened the charge transport pathways, which compensated for the reduced ion conductivity in the polymer gel electrolyte. Excellent pore filling on the $TiO_2$ particles minimized the exposure of the dye to the liquid and reduced dye detachment.

  • PDF

Organic Solvents Containing Zwitterion as Electrolyte for Li Ion Cells

  • Krishnan, Jegatha Nambi;Kim, Hyung-Sun;Lee, Jae-Kyun;Cho, Byung-Won;Roh, Eun-Joo;Lee, Sang-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1705-1710
    • /
    • 2008
  • Imidazolium based zwitterions, 1,2-dimethylimidazolium-3-n-propanesulfonate (DMIm-3S) and 1-Butylimidazolium-3-n-butanesulphonate (BIm-4S), were synthesized, and utilized them as additive for Li ion cell comprising of graphite anode and $LiCoO_2$ cathode. The use of 10 wt% of DMIm-3S in 1 M $LiPF_6$, EC-EMCDMC (1:1:1 (v/v)) resulted in the increased high rate charge-discharge performance. The low temperature performance of the Li ion cells at about −20 ${^{\circ}C}$ was also enhanced by these zwitterion additives. The DMIm- 3S additive resulted in the better capacity retention by the Li-ion cells even after 120 cycles with 100% depth of discharge (DOD) at 1 C rate in room temperature. Surface morphology of both graphite and $LiCoO_2$ electrode before and after 300 cycles was studied by scanning electron microscopy. An analogous study was performed using liquid electrolyte without any additive.

Chemical Treatment of Low-level Radioactive Liquid Wastes(II) (The Determination of Cation Exchange Capacity on various Clay Minerals)

  • Lee, Sang-Hoon;Sung, Nak-Jun
    • Nuclear Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.75-81
    • /
    • 1977
  • This experiment has been carried out to determine the pH dependent cation exchange capacity concerning the sorption phenomenon of long-lived radionuclides contained in low-level liquid radioactive waste on various clay minerals. The pH dependent cation exchange capacity determined by Sawhney's method are used to the analysis of sorption phenomenon. About 70 percent of the total cation exchange capacity is contributed by the pH dependent CEC due to the negative charge originated naturally in clays in case of clinoptilolite, vermiculite and sodalite. It is sugested in this test that the high neutral salt CEC, that is, highly charged clays would show good fixation yield. The removal of radionuclides at the pH range more than pH 9 is considered the hydroxide precipitation of metal ion rather than the cation exchange. The Na-clay prepared by the method of successive isomorphic substitution with electrolyte showed a considerable improvement in removal efficiency for the decontamination.

  • PDF

PILOT INJECTION OF DME FOR IGNITION OF NATURAL GAS AT DUAL FUEL ENGINE-LIKE CONDITIONS

  • MORSY M. H.;AHN D. H.;CHUNG S. H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The ignition delay of a dual fuel system has been numerically investigated by adopting a constant volume chamber as a model problem simulating diesel engine relevant conditions. A detailed chemical kinetic mechanism, consisting of 28 species and 135 elementary reactions, of dimethyl ether (DME) with methane ($CH_{4}$) sub-mechanism has been used in conjunction with the multi-dimensional reactive flow KIVA-3V code to simulate the autoignition process. The start of ignition was defined as the moment when the maximum temperature in the combustion vessel reached to 1900 K with which a best agreement with existing experiment was achieved. Ignition delays of liquid DME injected into air at various high pressures and temperatures compared well with the existing experimental results in a combustion bomb. When a small quantity of liquid DME was injected into premixtures of $CH_{4}$/air, the ignition delay times of the dual fuel system are longer than that observed with DME only, especially at higher initial temperatures. The variation in the ignition delay between DME only and dual fuel case tend to be constant for lower initial temperatures. It was also found that the predicted values of the ignition delay in dual fuel operation are dependent on the concentration of the gaseous $CH_{4}$ in the chamber charge and less dependent on the injected mass of DME. Temperature and equivalence ratio contours of the combustion process showed that the ignition commonly starts in the boundary at which near stoichiometric mixtures could exists. Parametric studies are also conducted to show the effect of additive such as hydrogen peroxide in the ignition delay. Apart from accurate predictions of ignition delay, the coupling between multi-dimensional flow and multi-step chemistry is essential to reveal detailed features of the ignition process.

Compositional Characterization and Colorant Identification of Omija (Schizandra chinensis) Fruit Extract

  • Kim, Seol-Hee;Lee, Byung-Hoo;Kim, Jong-Chul;Choi, Sung-Seen;Kim, Gwe-Won;Joo, Mi-Hyun;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.787-793
    • /
    • 2008
  • A major polyphenolic compound extracted from omija (Schisandra chinensis) fruit was structurally identified, and its composition of major nutrients was investigated as well in this study. A dominating high performance liquid chromatography (HPLC) peak of water-extracted anthocyanin represented 94.1% of total absorbable compounds at 520 nm, which was further identified with HPLC-mass spectrometry (MS). As a result, mass-to-charge ratio (m/z) of the predominant anthocyanin was determined to be 727, and it was identical to molecular mass of cyanidin-3-xylosylrutinoside (Cya-3-O-xylrut). This is the first report that colorant of omija is predominantly composed of Cya-3-O-xylrut. Omija fruit contained exclusively 3 types of monosaccharide such as glucosc (0.68 g), galactose (0.01 g), and fructose (0.52 g) per 100 g of fruits. Several organic acids, citric (3.29 g), malic (1.4 g), acetic (0.4 g), and succinic acids (0.36 g) per 100 g of fruits, were detected by high performance anion exchange chromatography (HPAEC) analysis. During the compositional analysis of tree amino acid by HPLC, it was noticed that omija fruit contained substantial amount (0.01 g/100 g of fruits) of $\gamma$-amino butyric acid (GABA).

Synthesis of Ag-doped black ZnO nano-catalysts for the utilization of visible-light (가시광선 활용을 위한 Ag 도핑 흑색 ZnO 나노 광촉매 합성)

  • Ui-Jun Kim;Hye-Min Kim;Seung-Hyo Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.208-218
    • /
    • 2023
  • Photocatalysts are advanced materials which accelerate the photoreaction by providing ordinary reactions with other pathways. The catalysts have various advantages, such as low-cost, low operating temperature and pressure, and long-term use. They are applied to environmental and energy field, including the air and water purification, water splitting for hydrogen production, sterilization and self-cleaning surfaces. However, commercial photocatalysts only absorb ultraviolet light between 100 and 400 nm of wavelength which comprises only 5% in sunlight due to the wide band gap. In addition, rapid recombination of electron-hole pairs reduces the photocatalytic performance. Recently, studies on blackening photocatalysts by laser, thermal, and plasma treatments have been conducted to enhance the absorption of visible light and photocatalytic activity. The disordered structures could yield mid-gap states and vacancies could cause charge carrier trapping. Herein, liquid phase plasma (LPP) is adopted to synthesize Ag-doped black ZnO for the utilization of visible-light. The physical and chemical characteristics of the synthesized photocatalysts are analyzed by SEM/EDS, XRD, XPS and the optical properties of them are investigated using UV/Vis DRS and PL analyses. Lastly, the photocatalytic activity was evaluated using methylene blue as a pollutant.

A Study on the Prevention Measures against Fire and Explosion Accidents during Splash Filling in Batch Process (회분식 공정에서 스플래쉬 필링(Splash Filling) 작업으로 인한 화재·폭발 사고 예방대책에 관한 연구)

  • Kim, Sang Ryung;Lee, Dae Jun;Kim, Jung Duk;Kim, Sang Gil;Yang, Won Baek;Rhim, Jong Guk
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.33-39
    • /
    • 2020
  • In general, in a batch reaction process in which products are made using flammable liquids, splash filling is used to clean the walls of the reactor by spraying flammable liquids, which are raw materials used for product, during cleaning of the reactor after work. During this process, mist of flammable liquid is generated, the lower limit of explosion is lowered, and fire·explosion may occur due to discharges caused by various types of complex charges, such as flow charge, collision charge, and ejection charge. Therefore, based on the recent accident case, to identify the risk when working in the form of splash filling with toluene in a batch process and perform an explosion impact analysis using the TNT equivalent method After that, we will analyze the accident results and suggest preventive measures such as constant purge system, improvement of cleaning method, and use of tantalum to prevent such accident.

Analysis of Electrochemical Characteristics of the Rechargeable $LiMn_2O_4$ Thin Film Battery (재충전이 가능한 박막전자용 $LiMn_2O_4$ 박막 전지의 전기화학 특성 분석)

  • Kim Joo-Seok;Jung Hunjoon;Kim Chan-Soo;Joo Seung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.131-135
    • /
    • 2000
  • In order to investigate the origin of capacity fading with charge/discharge cycling in $LiMn_2O_4$ thin film battery, impedance studies have been performed with increasing cycling in $LiMn_2O_4/1M\;LiClO_4-PC/Li$ cells. The fitted values obtained from impedance data show good agreements with the experimental results. Especially, the element of charge transfer resistance of $LiMn_2O_4/liquid$ electrolyte interface initially increased, and then saturated with increasing the charge/discharge cycles, which could explain the cause of initial abrupt capacity fading of $LiMn_2O_4$ thin film with cycling due to interfacial reaction. The steady capacity fading is caused by the increasing of Warburg resistance. The chemical diffusion coefficient of Li ions decreased from $5.15\times10^{-11}cm^2/sec$ at 1st cycles to $6.3\times10^{-12}cm^2/sec$ at 800th cycles, which attributed to the Jahn-Teller distortion/Mn dissolution which diminishes tetra hedral sites necessary for Li diffusion in $LiMn_2O_4$.

A Review on Electrochemical Model for Predicting the Performance of Lithium Secondary Battery (리튬이차전지 성능 모사를 위한 전기화학적 모델링)

  • Yang, Seungwon;Kim, Nayeon;Kim, Eunsae;Lim, Minhong;Park, Joonam;Song, Jihun;Park, Sunho;Appiah, Williams Agyei;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.43-52
    • /
    • 2019
  • As the application area of lithium secondary batteries becomes wider, performance characterization becomes difficult as well as diverse. To address this issue, battery manufacturers have to evaluate many batteries for a longer period, recruit many researchers and continuously introduce expensive equipment. Simulation techniques based on battery modeling are being introduced to solve such difficulties. Various lithium secondary battery modeling techniques have been reported so far and optimal techniques have been selected and utilized according to their purpose. In this review, the electrochemical modeling based on the Newman model is described in detail. Particularly, we will explain the physical meaning of each equation included in the model; the Butler-Volmer equation, which represents the rate of electrode reaction, the material and charge balance equations for each phase (solid and liquid), and the energy balance. Moreover, simple modeling processes and results based on COMSOL Multiphysics 5.3a will be provided and discussed.

A Study of Collision Characteristics in differential sedimentation according to variation of Ionic Strength, Zeta Potential and Particle Size (이온화세기, 제타전위, 입자크기에 따른 속도차 침전에서의 입자간 충돌특성에 관한 연구)

  • Han, Moo Young;Dock Ko, Seok;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 1998
  • The possibility of collision of two particles slowly settling one after another in water can be described using the collision efficiency factor in differential sedimentation (${\alpha}_{DS}$). ${\alpha}_{DS}$ was found to be a function of several parameters particle size, particle size ratio, Hamaker constant, density of liquid and particle, gravity acceleration. Previous researches were limited to the case when there is no electric repulsion assuming that the suspension is destabilized. In this paper, ${\alpha}_{DS}$ is calculated for the stabilized condition. The relative trajectory of two particles are calculated including hydrodynamics, attraction and repulsion forces. Ionic strength and surface potential significantly affect the collision possibility of two settling particles. Depending on the surface potential and ionic strength, ${\alpha}_{DS}$ value is divided into three regions; stable, unstable and transition zone. ${\alpha}_{DS}$ increases as the ionic strength increases, and as the surface charge decreases. This result can be used to model both destabilized and stabilized suspension incorporating the collision efficiency factors of the other coagulant mechanisms such as fluid shear and Browian motion.

  • PDF