• Title/Summary/Keyword: Liquefied Gas

Search Result 545, Processing Time 0.029 seconds

Design and Evaluation of a Crankcase Relief Valve Spring for LNG-Fueled Ships (LNG 연료추진 선박용 크랭크실 릴리프 밸브 스프링의 설계 및 평가)

  • Lee, Hyo Ryeol;Ahn, Jung Hwan;Ahn, Byoung Hoon;Kim, Hwa Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.263-269
    • /
    • 2015
  • Growing concerns regarding air pollution have recently increased the demand for liquefied natural gas (LNG) fueled ships. LNG-fueled ships are equipped with an explosion relief valve in the crankcase to relieve excessive pressure and stop flames from emitting from the crankcase. In this study, a finite element analysis was conducted to evaluate the crankcase relief valve disk spring design using an ANSYS Workbench, v.15. The setting pressure, leak and explosion test performed by european standard EN14797 to evaluate function and mechanical integrity of crankcase relief valve. The tests results indicate that the pressure of the crankcase relief valve is 3.05 bar, with no air leakage at 2.97 bar. Finally, the mechanical integrity of the crankcase relief valve was confirmed through an explosion test in which the valve plate assembly, flame arrester, and other parts were safe from fracturing.

Evaluations of lap shear and peel strength for epoxy and polyurethane adhesive bonded Triplex sheets at cryogenic temperatures (극저온에서 우레탄과 에폭시 접착제로 접착된 트리플엑스의 전단강도과 박리 강도 평가)

  • Shon, Min-Young
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.39-45
    • /
    • 2011
  • Adhesive joints are widely used for structural joining applications in various fields and environmental conditions. Polyurethane (PU) and Epoxy adhesives are now being used for liquefied natural gas (LNG) carriers at cryogenic temperatures. This paper presents a comprehensive evaluation of epoxy and PU adhesive bonds between Triplex sheets at normal and cryogenic temperatures. The most significant result of this study is that for all adhesives tested, there is a significant decrease in peel strength at cryogenic temperatures. However, the reasons for the decrease in peel strength for epoxy and PU adhesives differ. Consequently, PU adhesives can be considered better suited for use in applications requiring high bonding performance at cryogenic conditions, such as in LNG carriers.

A Study on Ignition Probability and Combustion Characteristics of Low Pressure Direct Injection LPG according to a Function of Ambient Condition (분위기 조건 변화에 따른 저압 직접분사식 LPG의 점화성 및 연소특성 연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Yeom, Jeong-Kuk;Jeon, Byong-Yeul
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.32-42
    • /
    • 2016
  • Under part load condition of spark-ignition engine, pumping loss had great effect on engine efficiency. To reduce pumping loss, the study designed spark-ignited engines to make direct spray of gasoline to combustion chamber. In spark-ignited direct-injection engines, ignition probability is important for successful combustion and flame propagation characteristics are also different from pre-mixed combustion. This study designed a visualization testing device to study ignition probability of spark-ignited direct-injection LPG fuel and combustion flame characteristics. This visualization device consists of combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. Ambient pressure, ambient temperature and ambient air flow velocity are important parameters on ignition probability of LPG-air mixture and flame propagation characteristics, and the study also found that sprayed LPG fuel can be directly ignited by spark-plug under proper ambient conditions. To all successful cases of ignition, the study recorded flame propagation image in digital method through ICCD camera and its flame propagation characteristics were analyzed.

Effect of Welding variables on White Spots Formation on the autogeneous GTA Welds of 36% Nickel-Iron alloy (36% Nickel-Iron 합금의 자동 GTA 용접부 반점 형성에 미치는 용접 변수의 영향)

  • Lee, Hee-Keun;Park, Jong-Min;Kim, Jin-Yong;Huh, Man-Ju
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.38-38
    • /
    • 2009
  • 36 percent nickel-iron alloy possesses a useful combination of low thermal expansion, moderately high strength and good toughness at temperatures down to that of liquid helium, $-269^{\circ}C$. These propeties coupled with good weldability and desirable physical properties make this alloy attractive for many cryogenic applications such as the cargo containment system in Liquefied Natural Gas carriers and pipes for low temperature. Generally, welding method of the 36% nickel-iron is applied with the manual and autogeneous GTAW. Lately white spots have been observed on the some autogeneous GTA welds of them. But the white spot formation have not been studied yet. This paper covers the analysis results of the white spots formation as changing welding variables.

  • PDF

A Comparative Study on Mechanical Behavior of Low Temperature Application Materials for Ships and Offshore Structures (선박 및 해양구조물용 극저온 재료의 기계적 거동 특성)

  • Park, Woong-Sup;Kang, Ki-Yeob;Chun, Min-Sung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.189-199
    • /
    • 2011
  • Austenite stainless steel(ASS), aluminum alloy and nickel steel alloy are the most widely used in many cryogenic applications due to superior mechanical properties at low temperature. The Face-Centered Cubic(FCC) and Hexagonal Close-Packed(HCP) materials are used for the primary and secondary insulation barrier of Liquefied Natural Gas(LNG) carrier tank and various kinds of LNG applications currently. In this study, tensile tests of ASS, aluminum alloy and nickel steel alloy were carried out for the acquisition of quantitative mechanical properties under the cryogenic environment. The range of thermal condition was room temperature to $-163^{\circ}C$ and strain rate range was 0.00016/s to 0.01/s considering the dependencies of temperatures and strain rates. The comprehensive test data were analyzed in terms of the characteristics of mechanical behavior for the development of constitutive equation and its application.

Hydrocarbon Synthesis of Waste Lignocellulosics by Liquefaction Reaction of Thermochemical Deoxyhdrogenolysis Method (II) (목질폐재(木質廢材)의 열(熱)-화학적(化學的) 탈(脫)산소-수소첨가반응(환원반응)에 의한 액화(液化)탄화수소의 합성 (II))

  • Lee, Byung-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.80-84
    • /
    • 1991
  • Lignocellulosic biomass including acetosolv ricestraw and spruce lignin were liquefied and converted into liquid hydrocarbons by catalytic hydroliquefaction reaction. These experimental works were carried out in 1-liter-capacity autoclave using 50% tetralin and m-cresol solution respectively as soluble solvent and Ni. Pd. Fe and red mud as catalyst. $H_2$ gas was supplied into the reactor for escaltion of deoxhydroenolysis reaction. Catalyst concentrations were 1 % of raw material based on weight. The ratio between raw materials and soluble solvent are 1g and 10cc. The reaction conditions are 400-$700^{\circ}C$ of reaction temperature, 10-50 atms of reaction pressure. The highest yield of hydrocarbon, so called "product oil" showed 32% and 5.5% of lowest char formation when red mud was used as catalyst. The product oil yields from those of other catalysts were in the range of 20-29%. The influence of different initial hydrogen pressures was examined in the range d 30-50 atms. A minimum pressure of 35 atms was necessary to obtain a complete recovery of souble solvent for recycling.

  • PDF

A Study on the Characteristics of Direct Injection Spark Ignition Engine using a Liquefied Petroleum Gas Fuel (LPG 연료를 이용한 직접분사식 스파크점화 엔진의 특성에 관한 연구)

  • Lee, Min-Ho;Jeong, Dong-Soo;Cha, Kyung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.44-51
    • /
    • 2005
  • According to the increasing concern on the global environment, the $CO_2$ regulation has been discussed including automobile emission regulation. In order to cope with this rapid changing circumstances, the development of an ultra low emission and super fuel economy automobile is essential. Direct injection LPG engine is the one of the possible future engine to maximize the engine efficiency. This experimental study for the development of direct injection LPG engine technology is promoted with two parts; spray characteristics of high pressure swirl injector, and performance characteristics of direct injection LPG engine. Engine characteristics according to the fuel was analyzed in order to establish stratified combustion technology for LPG engine by using the DISI engine. In the engine experiment, control system was manufactured for gasoline and LPG fuel. The engine was modified 2,000 cc GDI engine (fuel supply device, fuel injection device). Through this experiment, engine operating condition, engine speed and spark timing (MBT), fuel injection position, and fuel rate were investigated.

An Experimental Study on the Leakage Characteristics and Durability Evaluation of an LPLi Injector (LPLi 인젝터의 누설특성 및 내구평가에 관한 실험적 연구)

  • Choi, Young;Kim, Chang-Up;Oh, Seung-Mook;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.204-210
    • /
    • 2007
  • The worldwide energy problem and global warming cause the need of alternative fuels which feature low carbon-dioxide emission and another energy source. Liquefied Petroleum Gas (LPG) is one of the alternative fuels widely used as domestic and transportational fuel. The third generation LPLi fuel supply system has merits in the increase of engine power and low emissions. The injectors used in LPLi system should overcome a leakage problem and satisfy the durability conditions. Therefore, 1000 hour durability test of the injectors was carried out throughout this research. First, the spray pattern and the penetration length of the selected injectors is graphically shown. Next, the leakage amount with respect to the injection cycle is introduced. Finally, the shapes of nozzle holder and nozzle tip after durability test was investigated by analyzing the microscopic image of the injector tip. The variation in the shape of nozzle tip mainly due to the residue of rubber materials is found to be the reason for leakage.

  • PDF

Applications of the Multiobjective Optimization Method in Main Particular Selection (선박의 주요치수 선정에 있어서 다목적함수 최적화의 응용)

  • Dong-Kon Lee;Soo-Young Kim;Soo-Chul Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.10-21
    • /
    • 1995
  • In this paper, main particulars of a ship are optimized by the multiobjective optimization method which can offer more information to designer. To analyze the effect of a ship building cost and operating cost in the optimum design of a ship, the multiobjective optimization is performed with objective functions of building and operating costs. And Required Freight Rate(RFR) is also calculated as dependent variable. The design model was developed for the Liquefied Natural Gas(LNG) carrier with longer operating distance. The LNG carrier has some characteristics such as higher speed and building cost in comparison with other commercial ships.

  • PDF

Performance Simulation of BOG Reliquefaction System for Dual Fuel Engine of LNG Carrier (LNG 선박 Dual Fuel 엔진용 BOG 재액화 시스템의 성능 시뮬레이션)

  • Lee, Sang-Hoon;Shin, You-Hwan;Lee, Yoon-Pyo;Yoo, Ho-Seon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.148-153
    • /
    • 2008
  • As the oil price is dramatically jumping up, the consumption of LNG is rapidly expanding and the size of LNG carriers becomes bigger. For LNG ships, the application of DF (Dual-Fuel) engines gradually increases because of high efficiency, which alternatively use diesel or BOG (Boil-Off Gas) from cargo tank as a fuel. The surplus BOG from LNG cargo tank should be exhausted by GCU or liquefied through the BOG reliquefaction system and returned back. This study focused into its operational characteristics through the process simulation using HYSYS and discussed details on the influence of the variations of some operational parameters such as a distribution ratio by the change of fuel mass flow into the DF engine.

  • PDF