• Title/Summary/Keyword: Liposome

Search Result 423, Processing Time 0.031 seconds

A Study on DPPC Lipid Membrane and its Carbohydrate Mixture Membrane for Preparation of a Functional Membrane (기능성 막 제조를 위한 DPPC 지질막과 탄수화물 혼합막에 관한 연구)

  • Jeong, Teak-Suh;Rhee, Jae-Seong;Lee, Ki-Chang;Hong, Jang-Hoo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.252-260
    • /
    • 1996
  • In this article, we investigate into the structural changes of liposome to design its functional membranes by the synthesis of two types of liposomes, DPPC liposome and DTAB of hydrocarbon substance/DPPC liposome. The changes of membrane structures are evaluated by the CF fluorescent intensity measured above and below the phase transition temperature of the membrane, $t_c=41^{\circ}C$. CF fluorescent intensities are enhanced by the CF leakage from DPPC liposome at $45^{\circ}C$, while no changes are observed at $20^{\circ}C$. Under the same conditions, it is observed that the intensity enhanced by CF leakage from DPPC/DTAB liposome is larger than that of DPPC liposome alone, which suggests that DPPC/DTAB liposome has irregular arrangement. Under the presence of $Ca^{2+}$, Quin 2 fluorescent intensity in either DPPC liposome or DPPC/DTAB liposome is significantly increasing at $45^{\circ}C$, while almost none of the changes are observed at $20^{\circ}C$. The fluorescent intensity of DPPC liposome turns out to be larger than that of DPPC/DTAB liposome, which suggests that the DPPC/DTAB liposome is structurally more stable than the DPPC liposome. Additionally, when the analysis is done to observe changes in the shapes of membrane surfaces with ANS fluorescent, ANS fluorescent under DPPC or DPPC/DTAB liposome shows each of different appearances at $45^{\circ}C$ and $20^{\circ}C$ respectively. This result indicates that its respective membrane fluidity is changing above and below of the designated temperatures in phase transition. As to the magnitude of change of its membrane fluidity, DPPC liposome is much larger than DPPC/DTAB liposome. As far as the temperature in phase transition measured by DSC are concerned, it is $41^{\circ}C$ and $32^{\circ}C$ for DPPC and DPPC/DTAB liposome respectively, which suggests that DPPC/DTAB liposome has an irregular molecular arrangement in its structure. That is, it is summed up that DPPC/DTAB turns out to be structurally stable, even so, its structure is irregularly arranged.

  • PDF

Relative Bioavailability of Coenzyme Q10 in Emulsion and Liposome Formulations

  • Choi, Chee-Ho;Kim, Si-Hun;Shanmugam, Srinivasan;Baskaran, Rengarajan;Park, Jeong-Sook;Yong, Chul-Soon;Choi, Han-Gon;Yoo, Bong-Kyu;Han, Kun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.99-105
    • /
    • 2010
  • The purpose of this study was to evaluate relative bioavailability of the coenzyme Q10 (CoQ10) in emulsion and three liposome formulations after a single oral administration (60 mg/kg) into rats. Emulsion formulation of CoQ10 was prepared by conventional method using Phospholipon 85G as an emulsifier, and three liposome formulations (neutral, anionic, and cationic) of CoQ10 were prepared by traditional lipid film hydration technique using Phospholipon 85G, cholesterol, and charge carrier lipids (1,2-dioleoyl-3-trimethylammonium-propane chloride salt for cationic liposome and 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt for anionic liposome). Mean particle size of all CoQ10-loaded liposome was less than a micron, and size distribution of the liposome population was homogeneous. Bioavailability of CoQ10 in emulsion was 1.5 to 2.6-fold greater than liposome formulations in terms of $AUC_{0-24\;h}$. $T_{max}$ was 3 h when administered as emulsion while it was greater than 6 h in liposome formulations. Notably, it was approximately 8 h in cationic liposome. $C_{max}$ was highest in emulsion and was significantly decreased when administered as liposome. Charged liposome showed even lower $C_{max}$ than neutral liposome, especially in cationic liposome. In conclusion, therefore, it is suggested that clinicians and patients consider bioavailability issue a primary concern when choosing a CoQ10 product, especially when very high plasma level is required such as in the treatment of heart failure and Parkinson's disease.

Liposome Immunoassay for Bioactive Substances (리포좀을 이용한 생리활성물질의 면역학적 분석법)

  • Kim, Chong-Kook;Park, Kyung-Mi
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.4
    • /
    • pp.201-215
    • /
    • 1994
  • Recent development in the immunochemical technique has resulted in a new ultrasensitive analytical method known as liposome immunoassay (LIA). Liposome is a key element in performing liposome immunoassays, specifically designed to participate in immune reactions. A variety of markers can be encapsulated in liposomes and used as quantitative indicators of reactions. Liposome immunoassay based on agglutination, complement-mediated Iysis, cytolysin-mediated Iysis, detergent-mediated Iysis or destabilization of the liposomal membrane have been reviewed. The quantity of markers released from liposomes should be proportional to the concentration of the analytes. Therefore, liposomal agglutination and Iysis which are essential to liposomal Iysis are critically reviewed to provide a better understanding of liposome immunoassay. Based on the literature review of recent advances in liposome immunoassay for bioactive substances, this assay method may provide a convenient, specific and highly sensitive method for detecting and measuring trace amount of clinically relevant substances in the future.

  • PDF

Delivery of Ti Plasmid into Nicotiana sanderae Protoplasts via Liposomes (Liposome을 이용한 Ti Plasmid의 꽃담배 원형질체내 도입)

  • Lim, Myung-Ho;Jeong, Jae-Dong;Kim, In-Soo
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.343-348
    • /
    • 1994
  • Ti plasmid of A. tumefaciens was labeled with $^3H-thymidine$, purified and encapsulated into phosphatidylserine (PS) and PS-cholesterol (Chol; 1 : 1 molar ratio) liposomes by lyophilization-rehydration method. PS was supplemented with 1 mole percent octadecyl rhodamine B for fluorometric measurement of PS. Liposomes entrapping $^3H-Ti plasmid$ were fused with Nicotiana sanderae protoplasts by treating with 5 mM $CaCl_2$ and 10% PEG. The fusion was evidenced by fluorescence microscopic technique. The amounts of Ti plasmid and PS associated with protoplasts were assayed by the radioactivity of $^3H-Ti plasmid$ and by the fluorescence of rhodamine B. About 7.9% of the PS liposome and 7.2% of PS-Chol liposome were fused with protoplasts. During the fusion process, about 30% of the liposomal contents of PS-Chol liposome was leaked, in contrast to about 60% leakage of its contents in PS liposome. Accounting the number of liposomes fused with protoplasts together with the encapsulation efficiency and the leakage of liposomal contents, it was calculated that ca. 1,700 Ti plasmid was transfered into one protoplast by the present method. This result may indicates that the present method transfers enough Ti plasmid into plant protoplast to elicit genetic transformation of plants.

  • PDF

Inhibitory Effect of Lipid Bilayer Membrane on Protein Phosphatase 2A (Protein Phosphatase 2A의 활성화에 미치는 Lipid Bilayer Membrane의 저해 효과)

  • 남기열
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.302-307
    • /
    • 1992
  • Protein phosphatase 2A was obtained from a cytosolic fraction of bovine brain homogenate. The phosphatase activity using phosphorylated histone Hl as substrate was suppressed in the presence of liposomes composed of dipalmitoylphosphatidylcholine(DPPC) or the mixture of phosphatidylserine and DPPC. The binding of protein phosphatase to liposome was indicated by the facts that the phosphatase activity of the supernatant of protein phosphatase/multilayer vesicle mixture was decreased with increasing amount of liposome, and that [$^{125}I$]-labeled protein phosphatase was coeluted with liposome. However, the affinity of the protein for phospholipid membrane was not so high. On the other hand, okadaic acid and liposome reduced the phosphatase activity synergistically, which means that okadaic acid binds neither to lipid membrane nor to the membrane-associated phosphatase, The inhibitory effect of liposome was, therefore, ascribed to association of the protein phosphatase 2A with the lipid bilayer membrane.

  • PDF

Preparation of Antiserum against Hemolysin from Vibrio vulnificus using Hemolysin-bound Liposomes (Liposome을 이용한 Vibrio vulnificus가 생산하는 용혈독소의 항혈청 제조법)

  • 김영만
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.1
    • /
    • pp.91-95
    • /
    • 1993
  • To investigate hemolysin from Vibrio vulnificus in terms of protein chemistry and immunochemistvy, the simple method to produce antiserum was developed as follows ; Crude hemolysin from Vibrio vulnificus was mixed with cholesterol-phosphatidylcholine-liposome. Only hemolysin with molecular weight of 50kD was selertively bound to the liposome. Thus, without purification of crude hemolysin, liposome bound hemolysin was used as antigen to produce antiserum by injecting into back muscle of a rabbit. Resultant antiserum reacted only with hemolysin. Hemouysin of Vibrio vulnificus from patients and environment was formed single band in gel diffusion precipitation reaction with antiserum.

  • PDF

The study on stabilization of Retinol-Nanoemulsion using Skin Lipid Matrix(SLM)

  • Cho, Joo Hyun;Lim, Choon Bong;Chai, Hee Gil;Eom, Sang Yong;Kim, Jong Heon;Ji, Hong Geun
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.61-72
    • /
    • 2003
  • In cosmetic area, retinol is prominent ingredient for anti-wrinkle but unstable against light, heat, oxygen and so on. Therefore the stabilization of retinol is required. Here, we capsulated doubly retinol in the SLM(Skin Lipid Matrix) that makes three dimensional lamellar structure similar to skin, after formation of primary liposome (retinol-nanoemulsion). First, we make primary liposome from retinol / hydrogenated lecithin / polysorbate20 / caprylic & capric triglyceride / ethanol / and so on, and the mean diameter to 70 nm, using microfluidizer passed three times at 800 Bar, repeatedly. Then we produce DC-liposome (doubly capsulated-liposome) that was encapsulated primary liposome with SLM made of hydrogenated phosphatidyl choline / caprylic & capric triglyceride / 1, 3-butylene glycol / ceramide3 / cholesterol /etc. We measured for color stability against light and heat with chromameter. As a result of this experiment, we observed DC-liposome was more than from 1.5 to 3 times as stable as general liposome. Livability of retinol has improved from 2 to 6 times when we analyzed it by HPLC. Also, penetration effect of DC-liposome has improved.

  • PDF

The Effect of Ginseng Extracts on the Photooxidation of Liposome I. The protective effect of the formation of hydroperoxides (Liposome의 광산화반응에 미치는 인삼추출물의 영향 제1보. Hydroperoxide 생성 억제 효과)

  • Baek, Tae-Hong;Kim, Yeong-Ho;Lee, Jun-Hong
    • Journal of Ginseng Research
    • /
    • v.14 no.3
    • /
    • pp.379-384
    • /
    • 1990
  • In order to study the lipid peroxidation caused by light and the protective action it in biological memberane, reverse-phase evaporation liposome (REV) was employed as a model memberance and the effect of several antioxidants and ginseng water extracts were tested. In the presence of photosensitizer, liposome was oxidized easily and the oxidation index dut to the peroxidation was increased. The oxidation index of liposome was increased according to the increase in temperature. When dl-${\alpha}$-tocopherol, ${\beta}$-carotene or L-ascorbic acid was added into the reaction mixture, the photooxidation of liposome was inhibited. Ginseng water extract and crude saponin inhibited the rate of oxidation index of liposome in low concentration but increase in high concentration. On the other hand, when lipid hydroperoxide of liposome was tested by ferrothiocyanate method, ginseng water extract and crude saponin acted as antioxidants.

  • PDF

Distribution of Radionuclide Labeled Liposome in Experimental Study (방사성동위원소표지 Liposome의 분포에 대한 실험적 연구)

  • Lee, Bum-Woo;Jeong, Jae-Min;Kim, Sang-Eun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon;Ha, Sung-Whan
    • The Korean Journal of Nuclear Medicine
    • /
    • v.24 no.2
    • /
    • pp.317-324
    • /
    • 1990
  • Liposome was labelled with $^{99m}Tc$ after negative charged liposome was formed with combination of a few lipid components. $^{99m}Tc$ liposome was injected through the tail vein of C3H mice bearing fibrosarcoma and biodistribution of $^{99m}Tc$ liposome was evaluated. The results were as follows: 1) We confirmed formation of liposome which was small unillamellar and multilamellar vesicles. 2) In this experiment the optimal concentration of $SnCl_2$ was $156{\mu}g/ml$ to label liposome with $^{99m}Tc$ and labelling efficiency was 95%. 3) The labelled liposome was stable when it was incubated with human serum for 24 hours. Mean labelling efficiency was 94% at 24 hour. 4) The main uptake sites of Tc-99m liposome were liver and spleen. It showed significantly higher uptake than $^{99m}Tc$ HSA (p < 0.001). 5) $^{99m}Tc$ liposome uptake in tumor tissue was not significantly higher than $^{99m}Tc$ HSA uptake. In conclusion, $^{99m}Tc$ liposome disclosed high labelling efficiency and was highly stable. Liver and spleen were main uptake sites of $^{99m}Tc$ liposome. The uptake mechanism of $^{99m}Tc$ liposome also seemed to be different from that of $^{99m}Tc$ HSA. We conclude that $^{99m}Tc$ liposome would be a promising agents for the imaging of some tumor.

  • PDF

S-Thiolation and Oxidation of Glycogen Phosphorylase b and Peroxidation of Liposome Initiated by Free Radical Species

  • Lee, Kyu-Sun;Lee, Hyung-Min;Park, Young-Mee;Chang, Byeong-Doo;Chung, Tae-Young;Choi, Eun-Mi
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.81-87
    • /
    • 1996
  • The relationship of S-thiolation and oxidation of glycogen phosphorylase b and peroxidation of phosphatidyl choline liposome by xanthine oxidase (XOD), 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH), and 2,2'-azobis(dimethylvaleronitrile) (AMVN)-generated free radicals was investigated, Glycogen phosphorylase b was S-thiolated in the presence of glutathione and oxidized in the absence of it by XOD, AAPH and AMVN. In XOD-initiated reaction, the rates of S-thiolation and oxidation of phosphorylase were very similar and addition of liposome to the reaction mixture showed little inhibition of the modifications. In AAPH-initiated reaction, the rate of oxidation was higher than that of S-thiolation and addition of liposome increased oxidation of the protein but had no effect on S-thiolation. In AMVN-initiated reaction, S-thiolation was higher than oxidation and addition of liposome increased S-thiolation remarkably but showed no effect on oxidation. The effect of liposome on modifications of protein in AAPH and AMVN reaction seemed to be caused by certain reactive degradation products or intermediates of liposome by free radical attack. Peroxidation of liposome was not observed in XOD-initiated reaction. Liposome was gradually peroxidized by AAPH reaction. The peroxidation was inhibited by addition of GSH and phosphorylase. Peroxidation of liposome by AMVN was extreamly fast, and was not affected by GSH and phosphorylase.

  • PDF