• Title/Summary/Keyword: Lipopeptide

Search Result 57, Processing Time 0.03 seconds

Transcription Analysis of Daptomyc in Biosynthetic Genesin Streptomyces roseosporus

  • Rhee, Ki-Hyeong;Davies, Julian
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1841-1848
    • /
    • 2006
  • Insights into gene expression have the potential for improvement of antibiotic yield and the development of robust production hosts for use in recombinant biomolecule production. $Cubicin^{TM}$ (daptomycin for injection) is a recently approved antibiotic active against many Gram(+) pathogens, including those resistant to methicillin, vancomycin, and fluoroquinolones. Daptomycin is produced as a secondary metabolite by Streptomyces roseosporus. A 128 kb region of DNA including the daptomycin biosynthetic gene cluster (dpt) has been cloned. and sequenced. Using a selected array of nucleic acid probes representing this region, we compared the expression levels of the dpt genes between S. roseosporus wild-type (WT) and derived S. roseosporus high-producer of daptomycin (HP). We observed that the majority of the biosynthetic genes were upregulated in HP compared with WT; a total of 12 genes, including those encoding daptomycin synthetase, showed consistently and significantly higher expression levels, at least 5-fold, in HP compared with WT. In contrast, some genes, flanking the dpt cluster, were expressed at higher levels in the WT strain. The expression of housekeeping genes such as S. roseosporus rpsL, rpsG, and 16S (positive controls) and presumptive intergenic regions in the dpt cluster (negative control) were identical in the two strains. In addition, we compared transcription during the early, mid-log, and early-stationary phases of growth in the HP strain. The same set of genes was upregulated and downregulated under all conditions examined; housekeeping genes showed no relative change in expression level over the periods of growth tested. Analyses of this type would be of value in studies of strain improvement and also for the identification of gene regulation processes that are important for secondary metabolite production.

Morphological Variation and Recovery Mechanism of Residual Crude Oil by Biosurfactant from Indigenous Bacteria: Macro- and Pore-Scale Experimental Investigations

  • Song, Zhi-Yong;Han, Hong-Yan;Zhu, Wei-Yao
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.918-929
    • /
    • 2015
  • Microbial enhanced oil recovery (MEOR) is being used more widely, and the biological contributions involved in MEOR need to be identified and quantified for the improvement of field applications. Owing to the excellent interfacial activity and the wide distribution of producing strains in oil reservoirs, lipopeptides have proved to be an essential part of the complex mechanisms in MEOR. In this study, crude lipopeptides were produced by a strain isolated from an indigenous community in an oil reservoir. It was found that crude lipopeptides can effectively reduce the IFT (interfacial tension) to 10-1~10-2 mN/m under high salinity without forming stable emulsions, and the wettability of natural sandstone can be enhanced (Amott index, from 0.36 to 0.48). The results of core flooding experiments indicate that an additional 5.2% of original oil in place can be recovered with a 9.5% reduction of injection pressure. After the shut-in period, the wettability of the core, the reduction of injection pressure, and the oil recovery can be improved to 0.63, 16.2% and 9.6%, respectively. In the microscopic flooding experiments, the crude oil in membrane, cluster, and throat states contribute nearly 90% in total of the additional oil recovery, and the recovery of membranestate oil was significantly enhanced by 93.3% after shut in. Based on the results in macro and pore scale, the IFT reduction and the wettability alteration are considered primary contributors to oil recovery, while the latter was more dominant after one shut-in period.

Degradation capability of macromolecular organic matters and antimicrobial activities of Bacillus species isolated from surf clam (Tresus keenae) (왕우럭(Tresus keenae)에서 분리된 Bacillus species의 고분자 유기물질 분해능력과 항균활성)

  • Yi, Seung-Won;Moon, Sung-Hyun;Cho, Ho-Seong;Kim, Chul-Won
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.4
    • /
    • pp.265-275
    • /
    • 2017
  • The production of enzymes that help digestion, assimilation of essential nutrients, and prevent pathogenic bacteria are important for probiotics used in aquaculture. The objective of this study was to investigate enzyme activities for macromolecular organic matters and antimicrobial properties of the selected potential probiotics isolated from gut of surf clam (Tresus keenae) against well-known shellfish-pathogenic bacteria. Among 65 isolates from guts of 60 surf clams, seven Bacillus strains with outstanding degradation capability of macromolecule organic matter were selected as potential probiotics as follows: TKI01 (B. vietnamensis), TKI02, TKI26 (B. thuringiensis), TKI14, TKI32, TKI42 (B. amyloliquefaciens), and TKI18 (B. stratosphericus). After in vitro antimicrobial activity test was performed against five shellfish-pathogenic bacteria including Listonella anguillarum, Vibrio parahaemolyticus, V. splendidus, V. harveyi, V. tubiashii, PCR assay was performed to detect bacteriocin-producing strain. PCR results revealed that the five Bacillus strains possessed diverse bacteriocin genes including ericinA, coagulin, surfactin, iturin, bacyllomicin, fengycin, bacylisin, subtilin, and lantibiotics. In the present study, the selected seven Bacillus strains showed different enzyme activities according to types of macromolecule organic matters. And their antimicrobial activities varied based on the species of pathogenic bacteria. In addition, at least five Bacillus strains had genetic potential to produce several natural lipopeptide antibiotics that may help biological control of surf clam aquaculture. Therefore, mixed use of probiotics might show co-operative effect and increase the efficiency of probiotics rather than separate use. To the best of our knowledge, it is the first report on antimicrobial properties of Bacillus species isolated from surf clam.

Biocontrol Activity of Bacillus amyloliquefaciens CNU114001 against Fungal Plant Diseases

  • Ji, Seung Hyun;Paul, Narayan Chandra;Deng, Jian Xin;Kim, Young Sook;Yun, Bong-Sik;Yu, Seung Hun
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.234-242
    • /
    • 2013
  • A total of 62 bacterial isolates were obtained from Gomsohang mud flat, Mohang mud flat, and Jeju Island, Republic of Korea. Among them, the isolate CNU114001 showed significant antagonistic activity against pathogenic fungi by dual culture method. The isolate CNU114001 was identified as Bacillus amyloliquefaciens by morphological observation and molecular data analysis, including 16SrDNA and gyraseA (gyrA) gene sequences. Antifungal substances of the isolate were extracted and purified by silica gel column chromatography, thin layer chromatography, and high performance liquid chromatography. The heat and UV ray stable compound was identified as iturin, a lipopeptide (LP). The isolate CNU114001 showed broad spectrum activity against 12 phytopathogenic fungi by dual culture method. The semi purified compound significantly inhibits the mycelial growth of pathogenic fungi (Alternaria panax, Botrytis cinera, Colletotrichum orbiculare, Penicillium digitatum, Pyricularia grisea and Sclerotinia sclerotiorum) at 200 ppm concentration. Spore germ tube elongation of Botrytis cinerea was inhibited by culture filtrate of the isolate. Crude antifungal substance showed antagonistic activity against cucumber scleotiorum rot in laboratory, and showed antagonistic activity against tomato gray mold, cucumber, and pumpkin powdery mildew in greenhouse condition.

Inhibitory Abilities of Bacillus Isolates and Their Culture Filtrates against the Gray Mold Caused by Botrytis cinerea on Postharvest Fruit

  • Chen, Xiaomeng;Wang, Yajie;Gao, Yu;Gao, Tongguo;Zhang, Dongdong
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.425-436
    • /
    • 2019
  • Botrytis cinerea, a major phytopathogenic fungus, has been reported to infect more than 200 crop species worldwide, and it causes massive losses in yield. The aim of this study was to evaluate the inhibitory abilities and effects of Bacillus amyloliquefaciens RS-25, Bacillus licheniformis MG-4, Bacillus subtilis Z-14, and Bacillus subtilis Pnf-4 and their culture filtrates and extracts against the gray mold caused by B. cinerea on postharvest tomato, strawberry, and grapefruit. The results revealed that the cells of Z-14, culture filtrate of RS-25, and cells of Z-14 showed the strongest biocontrol activity against the gray mold on the strawberry, grape, and tomato fruit, respectively. All the strains produced volatile organic compounds (VOCs), and the VOCs of Pnf-4 displayed the highest inhibition values. Based on headspace solid-phase microextraction in combination with gas chromatography-mass spectrometry, esters accounted for the largest percentage of the VOCs produced by RS-25, MG-4, Z-14, and Pnf-4 (36.80%, 29.58%, 30.78%, and 36.26%, respectively). All the strains showed potent cellulase and protease activities, but no chitinase activity. RS-25, Z-14, and MG-4, but not Pnf-4, grew on chrome azurol S agar, and an orange halo was formed around the colonies. All the strains showed biofilm formation, fruit colonization, and lipopeptide production, which may be the main modes of action of the antagonists against B. cinerea on the fruit. This study provides the basis for developing natural biocontrol agents against the gray mold caused by B. cinerea on postharvest fruit.

Kalkitoxin attenuates calcification of vascular smooth muscle cells via RUNX-2 signaling pathways

  • Saroj K Shrestha;Se-Woong Kim;Yunjo Soh
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.69.1-69.11
    • /
    • 2023
  • Background: Kalkitoxin (KT) is an active lipopeptide isolated from the cyanobacterium Lyngbya majuscula found in the bed of the coral reef. Although KT suppresses cell division and inflammation, KT's mechanism of action in vascular smooth muscle cells (VSMCs) is unidentified. Therefore, our main aim was to investigate the impact of KT on vascular calcification for the treatment of cardiovascular disease. Objectives: Using diverse calcification media, we studied the effect of KT on VSMC calcification and the underlying mechanism of this effect. Methods: VSMC was isolated from the 6 weeks ICR mice. Then VSMCs were treated with different concentrations of KT to check the cell viability. Alizarin red and von Kossa staining were carried out to examine the calcium deposition on VSMC. Thoracic aorta of 6 weeks mice were taken and treated with different concentrations of KT, and H and E staining was performed. Real-time polymerase chain reaction and western blot were performed to examine KT's effect on VSMC mineralization. Calcium deposition on VSMC was examined with a calcium deposition quantification kit. Results: Calcium deposition, Alizarin red, and von Kossa staining revealed that KT reduced inorganic phosphate-induced calcification phenotypes. KT also reduced Ca++-induced calcification by inhibiting genes that regulate osteoblast differentiation, such as runtrelated transcription factor 2 (RUNX-2), SMAD family member 4, osterix, collagen 1α, and osteopontin. Also, KT repressed Ca2+-induced bone morphogenetic protein 2, RUNX-2, collagen 1α, osteoprotegerin, and smooth muscle actin protein expression. Likewise, Alizarin red and von Kossa staining showed that KT markedly decreased the calcification of ex vivo ring formation in the mouse thoracic aorta. Conclusions: This experiment demonstrated that KT decreases vascular calcification and may be developed as a new therapeutic treatment for vascular calcification and arteriosclerosis.

The Effects of Phenethyl Isothiocyanate on Nuclear Factor-κB Activation and Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression Induced by Toll-like Receptor Agonists (Phenethyl Isothiocyanate가 Toll-like Receptor Agonists에 의해 유도된 Nuclear Factor-κB 활성과 Cyclooxygenase-2, Inducible Nitric Oxide Synthase 발현에 미치는 효과)

  • Kim, Soo-Jung;Park, Hye-Jeong;Shin, Hwa-Jeong;Kim, Ji-Soo;Ahn, Hee-Jin;Min, In-Soon;Youn, Hyung-Sun
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.4
    • /
    • pp.279-283
    • /
    • 2011
  • Toll-like receptors (TLRs) play an important role in induction of innate immune responses. The activation of TLRs triggers inflammatory responses that are essential for host defense against invading pathogens. Phenethyl isothiocyanate (PEITC) extracted from cruciferous vegetables has an effect on anti-inflammatory therapy. Dysregulated activation of nuclear factor-${\kappa}$B (NF-${\kappa}$B), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) has been shown to play important roles in the development of certain inflammatory disease. To evaluate the therapeutic potential of PEITC, NF-${\kappa}$B activation and COX-2 and iNOS expression induced by lipopolysaccharide (LPS, TLR4 agonist), polyinosinic-polycytidylic acid (Poly[I:C], TLR3 agonist), 2 kDa macrophageactivating lipopeptide (MALP-2, TLR2 and TLR6 agonist) or oligodeoxynucleotide 1668 (ODN1668, TLR9 agonist) were examined. PEITC inhibits the activation of NF-${\kappa}$B induced by LPS or Poly[I:C] but not by MALP-2 or ODN1668. PEITC also suppressed the iNOS expression induced by LPS or Poly[I:C]. However, PEITC did not suppress COX-2 expression induced by LPS, Poly[I:C], MALP-2, or ODN1668. These results suggest that PEITC has the specific mechanism for antiinflammatory responses.

Characterization of Bacillus mojavensis KJS-3 for the Promotion of Plant Growth (식물 성장 촉진에 사용에 있어 Bacillus mojavensis KJS-3의 특징)

  • Kim, Kang Min;Liu, Jie;Go, Youn Suk;Kang, Jae Seon
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.910-916
    • /
    • 2015
  • Scientists have recently shown an interest in the characteristics of Bacillus mojavensis strains because of their increasing use in plants as a defense against diseases and mycotoxins. We have shown here that B. mojavensis KJS-3 possesses the typical characteristics of B. mojavensis strains including a strong resistance to high temperatures (≤50℃), tolerance to high salt concentrations (7% NaCl), ethanol tolerance (40% ethanol), and pH range for growth (pH 5-9). B. mojavensis KJS-3 has been used for the production of cyclic lipopeptides including important antifungal substances such as surfactin, iturin, and fengycin. Polymerase chain reaction analysis in this study showed that B. mojavensis KJS-3 can be used for the production of fengycin and the findings of LC-MS/MS analyses suggest that B. mojavensis KJS-3 can be used to produce iturin and surfactin. Antifungal activity analys is confirmed that B. mojavensis KJS-3 has antifungal effects on Botrytis cinerea, Rhizoctonia solani AG-4, Sclerotinia sclerotiorum, and Colletotricum goeosporioides. A microscopy assessment of the roots of wild ginseng plants planted together with B. mojavensis KJS-3 revealed that the roots contained B. mojavensis KJS-3, confirming the bacteria to be a plant growth promoting endophyte (PGPE) which acts against plant diseases and mycotoxins. Our findings lead us to conclude that B. mojavensis KJS-3 can be produced at an industrial level as a microbial pesticide or microbial fertilizer.

Anti-cancer and Anti-inflammatory Effects of Curcumin by the Modulation of Toll-like Receptor 2, 3 and 4 (Toll-like receptor 2, 3, 4의 신호전달체계 조절을 통한 curcumin의 항암${\cdot}$항염증 효과)

  • Kang, Soon-Ah;Hwang, Daniel;Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.175-180
    • /
    • 2007
  • Toll-like receptors induce innate immune responses recognizing conserved microbial structural molecules that are known as pathogen-associated molecular patterns (PAMPs). Ligand-induced homotypic oligomerization was found to proceed in LPS-induced activation of TLR4 signaling pathways. TLR2 is known to heterodimerize with TLR1 or TLR6 and recognize diacyl- or triacyl-lipopeptide, respectively. These results suggest that ligand-induced receptor dimerization of TLR4 and TLR2 is required for the activation of downstream signaling pathways. Therefore, receptor dimerization may be one of the first lines of regulation in the activation of TLR-mediated signaling pathways and induction of subsequent innate and adaptive immune responses. Here, we report biochemical evidence that curcumin from the plant Curcuma longa inhibits activation of $NF-{\kappa}B$, expression of COX-2, and dimerization of TLRs induced by TLR2, TLR3 and TLR4 agonists. These results imply that curcumin can modulate the activation of TLRs and subsequent immune/inflammatory responses induced by microbial pathogens.

Properties of Antimicrobial Substances Produced by Bacillus amyloliquefaciens CJW15 and Bacillus amyloliquefaciens SSD8 (Bacillus amyloliquefaciens CJW15와 SSD8이 만드는 항균물질들의 특성)

  • Liu, Xiaoming;Shim, Jae Min;Yao, Zhuang;Lee, Jae Yong;Lee, Kang Wook;Kim, Hyun-Jin;Ham, Kyung-Sik;Kim, Jeong Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • Two Bacillus strains, CJW15 and SSD8, with strong antibacterial activities were isolated from cheonggukjang. Both were identified as B. amyloliquefaciens strains after gene sequencing of rRNA and recA. CJW15 strongly inhibited the growth of B. cereus (ATCC14579), Listeria monocytogenes (ATCC19111), and Lactococcus lactis (ATCC11454). In comparison, SSD8 inhibited the growth of B. cereus (ATCC14579) and Enterococcus faecium (ATCC19953). The antibacterial activities of the two strains were not affected when exposed to a temperature of $100^{\circ}C$ for 15 min and were quite stable in acidic (pH 3) and alkaline (pH 12) pH conditions. Enzymatic treatments (trypsin, pepsin, proteinase K, and protease) had no effect on the activity of CJW15, but reduced the activity of SSD8 by half. Both isolates possess genes involved in the synthesis of lipopeptides (e.g. surfactin, fengycin, iturin, and iturin A), and genes encoding subtilin, a bacteriocin. Moreover, both isolates have fibrinolytic activities as well.