• Title/Summary/Keyword: Lipid removal

Search Result 83, Processing Time 0.021 seconds

Effect of Anti-Inflammation through Creation of Skin Fat Barrier on Scutellaria baicalensis extract (황금추출물의 지방장벽 생성을 통한 염증완화 효과)

  • Ahn, Sang Hyun;Kim, Ki Bong
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.35 no.1
    • /
    • pp.40-47
    • /
    • 2021
  • Objectives The purpose of this study is to confirm the effect of alleviating inflammation through creating skin fat barrier from Scutellaria baicalensis extract. Methods Four-week-old Balb/C mice were divided into four groups: control group (Ctrl), lipid barrier eliminated group (LBEG), dexamethasone (DM) treated group after lipid barrier elimination (DMTG), and Scutellaria baicalensis (SB) treated group after lipid barrier elimination (SBTG). Scutellaria baicalensis extract were administered for 5 days after removal of the fat barrier. Changes in skin condition, improvement of the fat barrier, and relief of inflammation were observed in each group. Results Compared to LBEG and DMTG, pathological skin damage and tissue changes were less in SBTG, and transepidermal water loss (TEWL) and pH were also significantly reduced. Filaggrin was also significantly increased in SBTG. KLK7, PAR-2, and TSLP in SBTG also showed significant reduction compared to the LBEG and DMTG. Conclusions Scutellaria baicalensis extract restores skin barrier and relieves inflammation through the creation of skin fat barrier. This means that the Scutellaria baicalensis extract can regulate Th2 differentiation through the creation of the epithelial fat barrier.

Dialysis Related Treatment to Increase Elimination of Toxic Agent (독성 물질 제거에 있어서 투석과 연관된 치료)

  • Kim, Heung-Soo;Shin, Gyu-Tae
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.1 no.1
    • /
    • pp.6-11
    • /
    • 2003
  • Various forms of dialytic techniques are available for detoxification. Hemodialysis, hemoperfusion and hemofiltration (hemodialfiltration) are the main treatment modalities. Because these modalities are rather invasive and expensive, it must be decided in balance of the risk and benefit to the patient. The prime consideration in the decision is based on the clinical features of poisoning; hemodialysis or hemoperfusion should be considered in general if the patient's condition progressively deteriorates despite intensive supportive therapy. The hemodialysis technique relies on passage of the toxic agent through a semipermeable membrane so that it can equilibrate with the dialysate and subsequently removed. It needs a blood pump to pass blood next to a dialysis membrane, which allows agents permeable to the membrane to pass through and reach equilibrium. Solute (or drug) removal by dialysis has numerous determinants such as solute size, its lipid solubility, the degree to which it is protein bound, its volume of distribution etc. The technique of hemoperfusion is similar to hemodialysis except there is no dialysis membrane or dialysate involved in the procedure. The patient's blood is pumped through a perfusion cartridge, where it is in direct contact with adsorptive material (usually activated charcoal) that has a coating material such as cellulose. This method can be used successfully with lipid-soluble compounds and with higher-molecular-weight compounds than for hemodialysis. Protein binding does not significantly interfere with removal by hemoperfusion. In conclusion, hemodialysis, hemoperfusion and hemofiltration can be used effectively as adjuncts to the management of severely intoxicated patients.

  • PDF

Evaluation of a Thermophilic Two-Phase Anaerobic Digestion Coupled with Membrane Process for Garbage Leachate Treatment (음식물 탈리액 처리를 위한 막결합형 고온 2상 혐기성 소화 공정의 평가)

  • Lee, Eun-Young;Jun, Duk-Woo;Lee, Sang-Hwa;Bae, Jae-Ho;Kim, Jeong-Hwan;Kim, Young-O
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • This study evaluated the performance of a thermophilic two-phase anaerobic digestion (TTPAD) coupled with membrane process treating garbage leachate. The pilot-scale treatment system is consisted of thermophilic acidogenic reactor (TAR) and thermophilic methanogenic reactor (TMR) coupled with an ultrafiltration (UF) membrane unit. The hydraulic retention time of TAR and TMR were 4 and 20 days, respectively. Effluent TCOD and SCOD of the TTPAD were $25\;{\pm}\;6\;and\;12\;{\pm}\;3$ g/L, respectively, and the corresponding TCOD and SCOD removal efficiencies were 77% and 81%, respectively. Propionate was major acids as 75% in the effluent. Scum formation was not observed in TTPAD, which might be resulted from complete lipid degradation. However, TTPAD was appeared to be sensitive to free ammonia toxicity. The UF membrane was operated with constant pressure filtration at average TMP 1.3 atm. Permeate flux had a range of 15-30 $L/m^2/hr$. With UF membrane, TCOD removal increased from 77% to 93%, and this SS free effluent would be beneficial to subsequent processes such as ammonia stripping.

Nutritional Quality and Physicochemical Characteristics of Defatted Bovine Liver Treated by Supercritical Carbon Dioxide and Organic Solvent

  • Kang, Sung-Won;Kim, Hye-Min;Rahman, M. Shafiur;Kim, Ah-Na;Yang, Han-Sul;Choi, Sung-Gil
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.29-37
    • /
    • 2017
  • Defatted bovine liver (DBL) is a potential source of protein and minerals. Supercritical carbon dioxide ($SC-CO_2$) and a traditional organic solvent method were used to remove lipid from bovine liver, and the quality characteristics of a control bovine liver (CBL), bovine liver defatted by $SC-CO_2$ ($DBLSC-CO_2$) at different pressures, and bovine liver defatted by organic solvent (DBL-OS) were compared. The $DBLSC-CO_2$ samples had significantly higher (p<0.05) protein, amino acid, carbohydrate, and fiber contents than CBL and DBL-OS. There was a higher yield of lipid from CBL when using $SC-CO_2$ than the organic solvent method. SDS-PAGE analysis demonstrated that the CBL and $DBLSC-CO_2$ had protein bands of a similar intensity and area, whereas DBL-OS appeared extremely poor bands or no bands due to the degradation of proteins, particularly in the 50 to 75 kDa and 20 to 25 kDa molecular weight ranges. In addition, $DBLSC-CO_2$ was shown to have superior functional properties in terms of total soluble content, water and oil absorption, and foaming and emulsification properties. Therefore, $SC-CO_2$ treatment offers a nutritionally and environmentally friendly approach for the removal of lipid from high protein food sources. In addition, $SC-CO_2$ may be a better substitute of traditional organic solvent extraction for producing more stable and high quality foods with high-protein, fat-free, and low calorie contents.

Protective Effects of a Ginseng Component, Malto1(2-Mlethyl-3-Hydrox)-4-Pyrone) against Tissue Damages Induced By Oxygen Radicals (활성산소에 의한 조직손상에 미치는 인삼성분의 보호효과)

  • Jae-Gook Shin;Jon
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.187-190
    • /
    • 1990
  • Maltol(2-methyl-3-hydroxy-r-pyrone), a component known to be present in Korean Ginseng root showed an antioxidant action but its potency as an antioxidant was low: about 1150th that of other antioxidants such as pphenylenediamine, BHA and BHT. However, maltol was able to protect the oxidation damages in biological systems such as adriamycin-induced membrane damage in isolated cardiomyocytes, paraquat-induced toxicities in isolated hepatocytes and reperfusion injury in isolated hearts. The antioxidant action of maltol was also shown to be effective in vivo. The antioxidant action of this compound was probably due to the removal of hydroxyl radicals. In view of the roles of oxygen radical in various pathological proceises, Korean Ginseng root which contains several antioxidants including maltol is expected to have beneficial effects on the oxygen radical-involved processes.

  • PDF

Melatonin as an Antioxidant (항산화제로서 Melatonin)

  • Kim, Seok-Joong;Russel J. Reiter
    • Proceedings of the Korean Journal of Food and Nutrition Conference
    • /
    • 2000.05a
    • /
    • pp.13-20
    • /
    • 2000
  • Melatonin, a chemical mediator produced in the mammalian pineal gland and several other organ, is a ubiquitously acting antioxidant. It has been shown to scavenge the hydroxyl radical (ㆍOH), singlet oxygen ($^1$O$_2$) and the peroxynitrite anion (ONOO-). In addition, melatonin reportedly stimulates a number of antioxidative enzymes including glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase. Antioxidative effect of melatonin in pharmacological and physiological level was investigated using hepatocarcinogen 2-nitropropane (2-NP) and pinealectornized (Px) rats, respectively. Lipid peroxidation (LPO) as indicated by malondialdehyde and 4-hydroxyalkenals and DNA damage as indicated by 8-hydroxydeoxyguanosine (8-OH-dG) induced by 2-NP were prevented by melatonin. The degree of LPO and DNA damage in Px rats were higher than those of intact old and young ones suggesting the removal of pineal gland resulted in higher accumulation of oxidative damage.

  • PDF

Cytotoxicity of Environmental Estrogenic Compound, Bisphenol A, via Generation of Free Radicals (내분비계 장애물질인 Bisphenol A의 free radical 생성을 통한 독성발현)

  • 안광현;김봉희
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.3
    • /
    • pp.175-182
    • /
    • 2003
  • Bisphenol A shares similarities in structure, metabolism and action with DES, a known human teratogen and carcinogen. Bisphenol A, a monomer of polycarbonate and epoxy resins, has been detected in canned food and human saliva. The purpose of the this study was to evaluate the cytotoxicity, cell proliferation of bisphenol A In the presence of a rat liver S9 mix, contaning cytochrome P450 enzymes, and Cu (II). In the present study, Bisphenol A in combination with Cu (II) exhibited a enhancement in cytotoxicity which were inhibited by free radical scavengers. The content of malondialdehyde, an end product of lipid peroxidation, was also found to increase with concentration of bisphenol A. Also, we examined the change of CuZn-SOD, Mn-SOD, catalase and GPx activities in the MCF-7 cells exposed to bisphenol A. The activities of CuZn-SOD, CPx, catalase were found to decrease with bisphenol A concentration. Meanwhile, the activity of Mn-SOD was unchanged. This indicated that elevated oxidative stress caused by imbalance between the production and removal of free radicals occurred in cells.

Effects of Residual Solvents in the Phase Transition, Transition Enthalpy, and Transition Temperature of Phospholipid Membranes (잔류 유기 용매가 모델 세포 지질막의 상전이, 상전이 엔탈피 및 상전이 온도에 미치는 영향)

  • An, Eun Seol;Choi, Jae Sun;Lee, Dong Kuk
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.163-170
    • /
    • 2014
  • Lipid membranes composed of phosphatidylcholine (PC) are used in biophysical study to mimic cellular membranes and interactions between the membrane and chemicals, where organics solvents are used in dissolving lipids or chemicals. Later, solvents are removed from the solution under nitrogen gas at room temperature, followed by the further removal of the solvent at vacuum condition for several hours. In this process, some solvents are easily removed under described conditions above and others are required more severe conditions. In this study, $^{31}P$ solid-state nuclear magnetic resonance (SSNMR) techniques and differential scanning calorimetry (DSC) were used to see any changes in the line shapes of $^{31}P$ NMR spectra of multilamellar vesicles (MLVs) samples of POPC and in the phase change temperature of multilamellar vesicles (MLVs) of DPPC in DSC thermogram with or without any residual solvents. The thermodynamic parameters associated with the solvents did exhibit noticeable changes depending on solvent types. Thus, it is concluded that solvents should be carefully chosen and removed completely and experimental results should also be interpreted with caution particularly for the experiments investigating lipid phase changes and related topics.

The Effect of Insoluble Dietary Fiber Extracted from Chinese Cabbage Waste on Plasma Lipid Profiles in Rats Fed a High Fat Diet (배추 폐기물로부터 분리한 불용성 식이섬유가 고지방 식이를 급여한 쥐의 혈중 지질농도에 미치는 영향)

  • Liu, Wenli;Ko, Kang-Hee;Kim, Hag-Ryeol;Kim, In-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.1
    • /
    • pp.33-40
    • /
    • 2012
  • This study investigated the lipid profiles for the possible improving activity of insoluble dietary fiber extracted from cabbage waste discarded during kimchi manufacture and market distribution. Enzyme-treated Insoluble Dietary Fiber (EIDF) is the remnants of crude dietary fiber (CDF) treated by ${\alpha}$-amylase, protease, and amyloglucosidase after removal of soluble materials from cabbage waste. The insoluble dietary fiber of CDF and EIDF in cabbage waste was $65.33{\pm}0.33%$ and $73.57{\pm}0.09%$, respectively. To examine the effects of EIDF on plasma cholesterol concentration, two group of rats were fed either a high fat diet (HFD) or a HFD containing 0.1~1.0% EIDF for 4 weeks. The body weight of all groups was not significantly different (p<0.05) but the body weight of EIDF+HFD groups was less than that of the HFD group (p<0.1). Compared with the HFD group, EIDF also lowered serum levels of total triglycerides to 11.2~23.3% and cholesterol to 26.8~28.5%. In EIDF+HFD groups, the HDL-cholesterol level increased by 7.2~26.1%, while LDL-cholesterol especially decreased by 51.0~61.4% and VLDL-cholesterol by 16.9~26.4%. The atherogenic index of EIDF+HFD groups was also reduced twice that of the HFD group. From these results, EIDF from cabbage waste could be a potential effective food ingredient for improving lipid profiles.

Synthesis of Diglyceride Containing Caprylic acid by Immobilized Lipase Catalyzed Esterification of Monoglyceride in a Solvent Free System (모노글리세리드와 카프릴산으로부터 고정화 리파제를 사용한 디글리세리드 생산)

  • Lee, Jang-Woon;Kang, Sung-Tae
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.365-370
    • /
    • 2009
  • For the production of diglyceride (DG) containing medium chain fatty acid, which could be utilized as a substrate to structured lipid production, monoglyceride (MG) and caprylic acid were reacted in the presence of lipase. The reaction system was well mixed homogeneously without using any organic solvent. Among the lipases investigated, Lipozyme RM IM and Novozym 435 were selected on the basis of equilibrium DG yields from the medium chain fatty acid and MG. And reaction conditions such as addition of molecular sieve, water content of immobilized lipase, reaction temperature, and mole ratio of MG/caprylic acid are optimized to increase DG production by using Lipozyme RM IM. DG content of reaction mixture showed 8% increase by adding molecular sieve to reaction mixture. Removal of water from the immobilized lipase could affect seriously equilibrium content of DG. More than 2.8%(w/w) removal of water from the support could make 44% of DG. Optimum temperature was found to $60^{\circ}C$. Temperature shift from $60^{\circ}C$ to $25^{\circ}C$ resulted in increase of free fatty acid (FFA) content. The equilibrium DG yield was not seriously affected by on MG/caprylic acid molar ratio. However, at the stoichiometric ratio of 1:1 the highest DG yield was obtained. Increasing MG/caprylic acid ratio from 0.3 to 1.8 decreased FFA content from 34% to 13%, while MG content increased from 27% to 50%.