• Title/Summary/Keyword: Lipid emulsion

Search Result 169, Processing Time 0.025 seconds

Counterion Effects on Transection Activity of Cationic Lipid Emulsion

  • Kim, Young-Jin;Kim, Tae-Woo;Hesson Chung;Kwon, Ik-Chan;Jeong, Seo -Young
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.279-283
    • /
    • 2001
  • Cationic lipid emulsion system consisting of 1, 2-dioleoyl-sn-slycero-3-trimethyl-ammonium-propane(DOTAP) and plasmin DNA with various counterions in the lipid headgroups were prepared. The transfection activity of the cationic lipid emulsion systems was then investigated in vitro and in vivo. The complex formation of plasmid DNA lipid emulsion was affected by the counterions through charged headgroup repulsion and also by the salt concen-tration in the media. As such , the transfection activity of the DOTAP emulsion system can be controlled by changing the counterions.

  • PDF

Effects of Basil Extract and Iron Addition on the Lipid Autoxidation of Soybean Oil-in-Water Emulsion with High Oil Content (고지방 물속 콩기름 에멀션의 지방질 자동 산화에서의 바질 추출물과 철 첨가 효과)

  • Kim, Jihee;Lee, Haein;Choe, Eunok
    • Korean journal of food and cookery science
    • /
    • v.33 no.1
    • /
    • pp.113-120
    • /
    • 2017
  • Purpose: Lipid autoxidation of a soybean oil-in-water emulsion with high oil content was studied under after basil extract and/or iron addition. Methods: The emulsion consisted of tocopherol-stripped soybean oil (40 g), citrate buffer (60 g, pH 4.0), and/or $FeSO_4$ (0.5 mg) with 75% ethanol extract (200 mg/kg) of basil (Ocimum basilicum). Lipid oxidation was evaluated using headspace oxygen content, hydroperoxide contents, and p-anisidne values of the emulsion. Polyphenol compound retention in the emulsion during oxidation was determined spectrophotometrically. Results: Addition of basil extract significantly (p<0.05) decreased reduced hydroperoxide contents of the emulsion, and iron significantly (p<0.05) increased anisidine values and decreased oxygen contents. Co-addition of basil extract and iron showed significantly (p<0.05) lower reduced hydroperoxide contents in the emulsion than compared to those of the emulsion with added iron and the control emulsion without basil extract nor or iron. During the emulsion oxidation, polyphenol compounds in the emulsion with added basil extract were degraded, but more slowlywhich was slowed degraded in the presence of iron. Conclusion: The iIron increased the lipid oxidation through hydroperoxide decomposition, and basil extract showed antioxidant activity through radical-scavenging and iron-chelation. Polyphenol degradation was decelerated by iron addition, which suggested suggests iron chelation may be more preferred topreferentially activated over radical scavenging in the antioxidant action by of basil extract in the oil-in-water emulsion with high oil content.

Lipid emulsion inhibits vasodilation induced by a toxic dose of bupivacaine by suppressing bupivacaine-induced PKC and CPI-17 dephosphorylation but has no effect on vasodilation induced by a toxic dose of mepivacaine

  • Cho, Hyunhoo;Ok, Seong Ho;Kwon, Seong Chun;Lee, Soo Hee;Baik, Jiseok;Kang, Sebin;Oh, Jiah;Sohn, Ju-Tae
    • The Korean Journal of Pain
    • /
    • v.29 no.4
    • /
    • pp.229-238
    • /
    • 2016
  • Background: The goal of this in vitro study was to investigate the effect of lipid emulsion on vasodilation caused by toxic doses of bupivacaine and mepivacaine during contraction induced by a protein kinase C (PKC) activator, phorbol 12,13-dibutyrate (PDBu), in an isolated endothelium-denuded rat aorta. Methods: The effects of lipid emulsion on the dose-response curves induced by bupivacaine or mepivacaine in an isolated aorta precontracted with PDBu were assessed. In addition, the effects of bupivacaine on the increased intracellular calcium concentration ($[Ca^{2+}]_i$) and contraction induced by PDBu were investigated using fura-2 loaded aortic strips. Further, the effects of bupivacaine, the PKC inhibitor GF109203X and lipid emulsion, alone or in combination, on PDBu-induced PKC and phosphorylation-dependent inhibitory protein of myosin phosphatase (CPI-17) phosphorylation in rat aortic vascular smooth muscle cells (VSMCs) was examined by western blotting. Results: Lipid emulsion attenuated the vasodilation induced by bupivacaine, whereas it had no effect on that induced by mepivacaine. Lipid emulsion had no effect on PDBu-induced contraction. The magnitude of bupivacaine-induced vasodilation was higher than that of the bupivacaine-induced decrease in $[Ca^{2+}]_i$. PDBu promoted PKC and CPI-17 phosphorylation in aortic VSMCs. Bupivacaine and GF109203X attenuated PDBu-induced PKC and CPI-17 phosphorylation, whereas lipid emulsion attenuated bupivacaine-mediated inhibition of PDBu-induced PKC and CPI-17 phosphorylation. Conclusions: These results suggest that lipid emulsion attenuates the vasodilation induced by a toxic dose of bupivacaine via inhibition of bupivacaine-induced PKC and CPI-17 dephosphorylation. This lipid emulsion-mediated inhibition of vasodilation may be partly associated with the lipid solubility of local anesthetics.

Effects of Chlorophyll Addition and Light on the Oxidative Stability and Antioxidant Changes of Perilla Oil Emulsion (들기름 에멀젼의 산화안정성 및 산화방지제에 대한 클로로필 첨가 및 빛의 영향)

  • Choe, Jeesu;Choe, Eunok
    • Korean journal of food and cookery science
    • /
    • v.29 no.1
    • /
    • pp.53-62
    • /
    • 2013
  • Lipid oxidation and antioxidants changes in perilla oil emulsion added with chlorophyll were studied during storage in the dark or under 1,700 lux light at $25^{\circ}C$ for 48 h. The emulsion was consisted of perilla oil (33.12 g), 5% acetic acid (66.23 g), egg yolk powder (0.5 g), and xanthan gum (0.15 g), and Chlorophyll b was added to the emulsion at 0, 2.5 and 4 mg/kg. The lipid oxidation was evaluated by headspace oxygen consumption and hydroperoxide formation, and tocopherols and polyphenols were monitored by HPLC and spectrophotometry at 725 nm, respectively. The lipid oxidation of the perilla oil emulsion in the dark was not significant regardless of the addition of chlorophyll. Light increased and accelerated the lipid oxidation of the emulsion, and increased addition level of chlorophyll under light increased it further. However, there was no significant change in fatty acid composition in any case. Contents of tocopherols and polyphenols in the emulsion were not significantly changed during storage in the dark regardless of chlorophyll addition, indicating their little degradation. Tocopherols and polyphenols in the emulsion were significantly degraded during storage of the emulsion under light, and the degradation rate of polyphenols was increased with addition level of chlorophyll. The lipid oxidation of the perilla oil emulsion was inversely related with the residual amounts of tocopherols and polyphenols, with more dependent on the retention of polyphenols than that of tocopherols.

A Hot Melt w/o/w Emulsion Technique Suitable for Improved Loading of Hydrophilic Drugs into Solid Lipid Nanoparticles (현탁된 고형지질나노입자 내로 친수성 약물의 봉입률을 증대시키기 위한 w/o/w 에멀션 가온용융유화법의 평가)

  • Lee, Byoung-Moo;Choi, Sung-Up;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Recently increasing attention has been focused on solid lipid nanoparticles (SLN) as a parenteral drug carrier due to its numerous advantages that can come from both polymeric particle and fat emulsions, together with the possibility of controlled release and increasing drug stability. Lipophilic drugs such as paclitaxel, cyclosporin A, and all-trans retinoic acid have been successfully entrapped in SLN but the incorporation of hydrophilic drugs in SLN is very limited because of their very low affinity to the lipid. Therefore, as a new approach to improve the loading of hydrophilic drugs, a w/o/w emulsion technique has been developed. The primary objective of the current study was to improve the loading efficiency of a model hydrophilic drug, glycine (Log P = -3.44) into SLN. The proposed preparation process is as follows: A heated aqueous phase consisting of 0.1 ml of glycine solution in water (100 mg/ml), and poloxamer 188 (5 mg) were then added to a molten oil phase containing precirol (100 mg) and lecithin (5 mg). This mixture was dispersed by sonicator, leading to a w/o emulsion. A double emulsion (w/o/w) was formed after the addition of 2% poloxamer solution to the above dispersed system. After cooling the double emulsion, solid lipid nanosuspensions were successfully formed. The lipid nanoparticles had the mean particle size of 441.25 nm, and the average zeta potential of -20.98 mV. The drug loading efficiency was measured to be 8.54% and the drug loading amount was measured to be 0.92%. The w/o/w emulsion method showed an increased loading efficiency compared to conventional o/w emulsion method.

Effect of Surfactant Micelles on Oxidation in W/O/W Multiple Emulsion (Surfactant micelle이 W/O/W multiple emulsion의 산화에 미치는 영향)

  • Cha, Woen-Seup;Cho, Young-Je
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1611-1616
    • /
    • 2010
  • The purpose of this research was to determine the effect of surfactant micelles on lipid oxidation in W/O/W multiple emulsions. The content of ferric irons and hydroperoxide in the continuous phase in W/O/W multiple emulsions was measured as a function of Brij micelle. The concentration of ferric iron and hydroperoxide in the continuous phase increased with increased storage time (1~6 days). Lipid oxidation rates, as determined by the formation of lipid hydroperoxides, TBARs and headspace hexanal, in the W/O/W multiple emulsions containing ferric iron decreased when 3% surfactant micelles were exceeded. These results indicate that excess surfactant micelles could alter the physical location and prooxidant activity of iron in W/O/W multiple emulsions.

Effect of Ethanol Extracts in Pinus densiflora, Lithospermum erythrorhizon on the Lipid Oxidation of Oil Emulsion (식물체(솔잎, 자초)의 에탄올 추출물이 유탁액의 지방산화에 미치는 영향)

  • 김수민;조영석;성삼경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.5
    • /
    • pp.984-989
    • /
    • 1999
  • This study was carried out to investigate the effects of ethanol extracts on lipid oxidation of oil emulsion. The results are as follows; The scavenging ability of plant extracts for hydroxyl radical was found, and plant extracts played an important role as a strong chelating agents to bind iron if Fe2+ ion exists in oil emulsion. Pinus densiflora(PD), Lithospermum erythrorhizon(LE) and PD+LE acted as strong chelating agents to bind iron to reduce lipid oxidation in oil emulsion. The content of Fe2+ ion in ethanol extracts from LE and PD+LE were significantly higher(p<0.05) than that of ethanol extracts from PD. The content of total iron has same tendency. The ascorbic acid content of PD(16.36ppm) was slightly higher than those of LE(13.08ppm). Electron donating ability of PD was significantly higher(p<0.05) than those of LE. However, the superoxide(SOD) like ability of LE showed a little higher than those of LE and PD+LE, which means the strong antioxidant activity of LE. The nitrite scavenging effects were dependent on pH value, however, they decreased as pH value increased. Especially, they almost didn't show the nitrite scavenging effect in pH 6.0. In conclusion, the PD and LE extracts may be used as natural antioxidant sources to reduce lipid oxidation in oil emulsion.

  • PDF

Lipid emulsion therapy of local anesthetic systemic toxicity due to dental anesthesia

  • Rhee, Seung-Hyun;Park, Sang-Hun;Ryoo, Seung-Hwa;Karm, Myong-Hwan
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.19 no.4
    • /
    • pp.181-189
    • /
    • 2019
  • Local anesthetic systemic toxicity (LAST) refers to the complication affecting the central nervous system (CNS) and cardiovascular system (CVS) due to the overdose of local anesthesia. Its reported prevalence is 0.27/1000, and the representative symptoms range from dizziness to unconsciousness in the CNS and from arrhythmias to cardiac arrest in the CVS. Predisposing factors of LAST include extremes of age, pregnancy, renal disease, cardiac disease, hepatic dysfunction, and drug-associated factors. To prevent the LAST, it is necessary to recognize the risk factors for each patient, choose a safe drug and dose of local anesthesia, use vasoconstrictor, confirm aspiration and use incremental injection techniques. According to the treatment guidelines for LAST, immediate application of lipid emulsion plays an important role. Although lipid emulsion is commonly used for parenteral nutrition, it has recently been widely used as a non-specific antidote for various types of drug toxicity, such as LAST treatment. According to the recently published guidelines, 20% lipid emulsion is to be intravenously injected at 1.5 mL/kg. After bolus injection, 15 mL/kg/h of lipid emulsion is to be continuously injected for LAST. However, caution must be observed for >1000 mL of injection, which is the maximum dose. We reviewed the incidence, mechanism, prevention, and treatment guidelines, and a serious complication of LAST occurring due to dental anesthesia. Furthermore, we introduced lipid emulsion that has recently been in the spotlight as the therapeutic strategy for LAST.

The study on stability of microemulsion using amphiphilic lipid (Amphiphilic Lipid를 활용한 Micromuitiple Emulsion의 안정성에 관한 연구)

  • Gang, Hyeon-Seop;Yun, Gyeong-Ro;Seo, Bong-Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.23 no.1
    • /
    • pp.145-158
    • /
    • 1997
  • Lipid를 이용하여 보다 안정한 microemulsion을 제조함에 있어 Zeta potential을 이요하여 비교 분석 하여 보았다. 실험 시 Lipid Base와 Cetyl phosphate의 함량변화가 particle size와 zeta potential에 미치는 영향에 대하여 실험을 수행하였으며, zeta potetial의 시간 경과에 따른 경시변황 대하뎌도 조사하여 microemulsion의 적정조건을 찾을 수 있었다. microemulsion과 emulsion에 대하여 안전성을 비교 관찰 하였다.

  • PDF

Effect of Polyphenolic Compounds from Green Tea Leaves on Production of Hydroperoxide for Lipid Oxidation in Corn Oil-in-Water Emulsion (녹차 페놀류가 corn oil-in-water emulsion의 산화 중 hydroperoxide 생성에 미치는 영향)

  • Cho, Young-Je;Kim, Byung-Gyu;Chun, Sung-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.19-24
    • /
    • 2004
  • Effect of polyphenolic compounds from green tea leaves and surfactant micelles on lipid oxidation in corn oil-in-water emulsion (O/W) wag determined. Concentrations of polyphenolic compound and surfactant in continuous phase of O/W were measured. Particle size of O/W with 17 mM Brij 700 and 5% corn oil increased with increasing concentration of polyphenolic compound (100-200 ppm). Concentration of surfactant in the continuous phase was lower than that of control. Lipid oxidation rates, as determined by the formation of lipid hydroperoxides and headspace hexanal, in O/W emulsions containing polyphenolic compounds decreased with increasing concentration of polyphenolic compounds (100-200 ppm). Inhibition of hydroperoxide and headspace hexanal produced via lipid oxidation by polyphenolic compounds in O/W was BHT>procyanidin B3-3-O-gallate>(+)-gallocatechin >(+)-catechin.