• Title/Summary/Keyword: Lipid Transport

Search Result 107, Processing Time 0.027 seconds

Some Factors Affecting Lipid Metabolism (지질대사(脂質代謝)에 관여하는 인자(因子))

  • Nam, Hyun-Keun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.2
    • /
    • pp.191-200
    • /
    • 1986
  • It is now generally accepted that individuals at increased risk for cardiovascular disease may be identified by certain traits or habbits. The factors such as high blood pressure, elevated blood cholestrol, age, sex and obesity are associated with increseaed frequency of disease. The blood cholesterol level lowering will decrease cardiovascular disease risk. The regression of atherosclerosis can be achieved by lowering the level of circulating cholesterol. Those things are connected with the quantity and quality of protein, fats, carbohydrates, especially soluble and non-soluble fiber, magnesium and calcium. The lipoprotein and lipid metabolism are connected with the lipid transport. The factors on lipid absorption and blood serum lipid pattern of human are exist. The factors have a variety of materials with different chemical and physical properties. The soluble fiber diet make a low blood and liver lipids. Many kind of soluble fiber results in a lowering of blood cholesterol and triglyceride levels. The cholesterol lowering effects of dietery fiber may be a results of alterations of in intestinal handling of fats, hepatic metabolism of fatty acid or triglyceride acid metabolism of lipoprotein. It is investigated that the high density lipoprotein (HDL) is inversely related to coronary artery disease. It has been postulated that HDL may be an important factor in cholesterol efflux from the tissues, therby reducing the amount of cholesterol deposited there. Alternatively, the HDL may pick up cholestyl ester and phospholipid during normal VLDL lipolysis in the plasma. The HDL levels are relatively insensitive to diet. At present time, the cause-and -diet effect of HDL's inverse relation to CHD remains unclear.

  • PDF

Dietary Fat Intake during Pregnancy and Serum Lipid Levels in Mother and Umbilical Cord of Full-term and Preterm Delivery (만기분만의 조기분만 산모의 임신중 지방섭취와 모체 및 제대혈청의 지질농도)

  • 박성혜
    • Journal of Nutrition and Health
    • /
    • v.32 no.5
    • /
    • pp.577-584
    • /
    • 1999
  • The correlation between maternal lipid nutritional status during pregnancy and gestational length was investigated. Subjects consisted of 30 full-term delivery mothers, 30 preterm delivery mothers, and babies of both groups. Dietary fat intake during pregnancy and serum lipid levels in mother and umbilical serum were measured. The mean daily intake levels of fatty acid during pregnancy were lower than the recommended dietary allowances, while $\omega$6/$\omega$3 ratios of dietary fatty acids were acceptable. For preterm delivery mothers, fatty acid intake levels to be lower than those in full-term delivery mothers, especially DHA intake of these two groups was significantly different. During gestation, hyperlipidemia was apparent in the pregnant women. The serum lipid contents of preterm delivery mothers tended to be lower than those of full-term delivery mothers, and umbilical cord serum lipid contents of the preterm delivery group tended to be higher than those of the full-term delivery group. Total cholesterol levels in the umbilical cord serum of preterm babies were significantly higher than those of full-term delivery group. On the other hand, total cholesterol and HDL-cholesterol levels between umbilical cord serum and maternal serum were positively correlated in the preterm delivery group. Concerning, energy and fatty acid intakes were more closely associated with umbilical cord serum lipid levels in full-term babies, but negatively associated in preterm babies. It was concluded that gestational length was related to the dietary intake of fatty acids such as DHA in pregnant women. For better understanding, the ralationship between placental lipid transport mechanisms and gestational length needs to be explored.

  • PDF

High-concentration Epigallocatechin Gallate Treatment Causes Endoplasmic Reticulum Stress-mediated Cell Death in HepG2 Cells

  • Ahn, Joon-Ik;Jeong, Kyoung-Ji;Ko, Moon-Jeong;Shin, Hee-Jung;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • Epigallocatechin gallate (EGCG), a well-known antioxidant molecule, has been reported to cause hepatotoxicity when used in excess. However, the mechanism underlying EGCG-induced hepatotoxicity is still unclear. To better understand the mode of action of EGCG-induced hepatotoxicity, we examined the effect of EGCG on human hepatic gene expression in HepG2 cells using microarrays. Analyses of microarray data revealed more than 1300 differentially expressed genes with a variety of biological processes. Upregulated genes showed a primary involvement with protein-related biological processes, such as protein synthesis, protein modification, and protein trafficking, while downregulated genes demonstrated a strong association with lipid transport. Genes involved in cellular stress responses were highly upregulated by EGCG treatment, in particular genes involved in endoplasmic reticulum (ER) stress, such as GADD153, GADD34, and ATF3. In addition, changes in genes responsible for cholesterol synthesis and lipid transport were also observed, which explains the high accumulation of EGCG-induced lipids. We also identified other regulatory genes that might aid in clarifying the molecular mechanism underlying EGCG-induced hepatotoxicity.

Lipid Metabolism and Regulation in Chickens (닭의 지방대사와 조절)

  • Yang Soo Moon
    • Korean Journal of Poultry Science
    • /
    • v.51 no.2
    • /
    • pp.27-37
    • /
    • 2024
  • The poultry plays a crucial role in the animal industry, providing humans with efficient, high-quality animal protein. The rapid growth and short generational intervals of broilers offer significant benefits compared to other economic animals. This growth and increased muscle mass in modern commercial broilers result from advancements in breeding. However, the high productivity of contemporary broilers indicates they are approaching their physiological limits, with excessive fat accumulation becoming a significant industry issue. This not only reduces lean meat yield and feed efficiency but also negatively impacts consumers, especially due to problematic abdominal fat, which consumes more energy than lean meat production. Laying hens, reared for extended periods, maintain high productivity, producing a substantial number of eggs. This productivity in laying hens, akin to broilers, stems from genetic selection and breeding. For egg production, laying hens require physiological support for necessary nutrients. In this context, yolk fat accumulation is a critical physiological process. Lipoproteins, essential in avian lipid metabolism, are vital for yolk and body fat accumulation. Understanding these lipoproteins and their metabolism is key to developing healthier, more productive animals, offering economic benefits to farmers and improved nutritional quality to consumers. This review focuses on the physiological aspects of dietary fat transport, fatty acid biosynthesis in the liver, fat accumulation in the abdomen and muscles, and lipid deposition in egg yolks in chickens. It also highlights recent research trends in the regulation of fat metabolism in poultry.

Role of Phospholipase $A_2$ in Oxidant-induced Alteration in Phosphate Transport in Primary Cultured Rabbit Renal Proximal Tubule Cells

  • Park, Kwon-Moo;Ko, Sun-Hee;Woo, Jae-Suk;Jung, Jin-Sup;Lee, Sang-Ho;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.5
    • /
    • pp.601-609
    • /
    • 1998
  • The present study was undertaken to examine the role of phospholipase $A_2\;(PLA_2)$ in oxidant-induced inhibition of phosphate transport in primary cultured rabbit renal proximal tubule cells. Uptakes of phosphate and glucose were dose-dependently inhibited by an oxidant t-butylhydroperoxide (tBHP), and the significant inhibition appeared at 0.025 mM of tBHP, whereas tBHP-induced alterations in lipid peroxidation and cell viability were seen at 0.5 mM. tBHP stimulated arachidonic acid (AA) release in a dose-dependent fashion. A $PLA_2$ inhibitor mepacrine prevented tBHP-induced AA release, but it did not alter the inhibition of phosphate uptake and the decrease in cell viability induced by tBHP. tBHP-induced inhibition of phosphate transport was not affected by a PKC inhibitor, staurosporine. tBHP at 0.1 mM did not produce the inhibition of $Na^+-K^+-ATPase$ activity in microsomal fraction, although it significantly inhibited at 1.0 mM. These results suggest that tBHP can inhibit phosphate uptake through a mechanism independent of $PLA_2$ activation, irreversible cell injury, and lipid peroxidation in primary cultured rabbit renal proximal tubular cells.

  • PDF

Taurine Regulates Mitochondrial Function During 7,12-Dimethyl Benz[a]anthracene Induced Experimental Mammary Carcinogenesis

  • Vanitha, Manickam Kalappan;Priya, Kalpana Deepa;Baskaran, Kuppusamy;Periyasamy, Kuppusamy;Saravanan, Dhravidamani;Venkateswari, Ramachandran;Mani, Balasundaram Revathi;Ilakkia, Aruldass;Selvaraj, Sundaramoorthy;Menaka, Rajendran;Geetha, Mahendran;Rashanthy, Nadarajah;Anandakumar, Pandi;Sakthisekaran, Dhanapal
    • Journal of Pharmacopuncture
    • /
    • v.18 no.3
    • /
    • pp.68-74
    • /
    • 2015
  • Objectives: The present study was undertaken to determine the modulatory effect of taurine on the liver mitochondrial enzyme system with reference to mitochondrial lipid peroxidation (LPO), antioxidants, major tricarboxylic acid cycle enzymes, and electron transport chain enzymes during 7,12-dimethyl benz[a]anthracene (DMBA) induced breast cancer in Sprague-Dawley rats. Methods: Animals in which breast cancer had been induced by using DMBA (25 mg/kg body weight) showed an increase in mitochondrial LPO together with decreases in enzymic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)), non-enzymic antioxidants (reduced glutathione (GSH), vitamin C, and vitamin E), in citric acid cycle enzymes (isocitrate dehydrogenase (ICDH), alpha ketoglutarate dehydrogenase (alpha KDH), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH)), and in electron transport chain (ETC) complexes. Results: Taurine (100 mg/kg body weight) treatment decreased liver mitochondrial LPO and augmented the activities/levels of enzymic, and non-enzymic antioxidants, tricarboxylic acid cycle enzymes and ETC complexes. Conclusion: The results of our present study demonstrated the chemotherapeutic efficacy of taurine treatment for DMBA-induced breast carcinomas.

Alteration of Lipid Metabolism Related Proteins in Liver of High-Fat Fed Obese Mice (고지방식이 비만쥐의 지방관련 단백질의 변화)

  • Seo, Eun-Hui;Han, Ying;Park, So-Young;Koh, Hyong-Jong;Lee, Hye-Jeong
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1019-1026
    • /
    • 2010
  • Obesity and being overweight are strongly associated with the development of metabolic disease such as diabetes, hypertension, dyslipidemia. High-fat diet (HFD) is one of the most important factors which cause obesity. In this study, C57BL/6 mice were treated with a HFD for 22 weeks in order to induce obesity and hyperglycemia. Twenty-two weeks later, body weight and plasma glucose level of the HFD group were significantly increased, compared with the normal diet (ND) group. Intra-peritoneal glucose tolerance test (IPGTT) showed glucose intolerance in the HFD group compared with the ND group. These results confirmed that a HFD induced obesity and hyperglycemia in C57BL/6 mice. Plasma levels of triglyceride (TG) and total cholesterol (TC) were increased in the HFD group compared with the ND group. Hepatic levels of TG and TC were also increased by a HFD. To investigate the alteration of lipid metabolism in liver, proteins which are related to lipid metabolism were observed. Among lipid synthesis related enzymes, fatty acid synthase (FAS) and glycerol phosphate acyl transferase (GPAT) were significantly increased in the HFD group. Apolipoprotein B (apoB) and microsomal triglyceride transport protein (MTP), which are related to lipid transport, were significantly increased in the HFD group. Interestingly, protein level and phosphorylation of AMP-activated protein kinase (AMPK), which is known as a metabolic regulator, were significantly increased in the HFD group compared with the ND group. In the present study we suggest that HFD may physiologically increase the proteins which are related with lipid synthesis and lipid transport, but that HFD may paradoxically induce the activation of AMPK.

Beneficial Effect of Scutellaria baicalensis Georgi Extract on Mercury Chloride-Induced Membrane Transport Dysfunction in Rabbit Renal Cortical Slices (황금약침액(黃芩藥鍼液)이 가토(家兎) 신피질절편(腎皮質切片)에서 수은(水銀)에 의한 세포막(細胞膜) 물질이동(物質移動) 기능장애(機能障碍)에 미치는 영향(影響))

  • Kim, Hong-Soo;Song, Choon-Ho
    • Journal of Pharmacopuncture
    • /
    • v.4 no.2
    • /
    • pp.49-56
    • /
    • 2001
  • This study was undertaken to determine whether Scutellaria baicalensis Georgi (SbG) extract exerts the protective effect against $HgCl_2$-induced alterations in membrane transport function in rabbit renal cortical slices. The slices were treated with 0.1 mM $HgCl_2$ for 60 min at $37^{\circ}C$. $HgCl_2$ caused an inhibition in PAH uptake by renal cortical slices. Such an effect was accompanied by depressed $Na^+-K^+$-ATPase activity and ATP depletion. SbG prevented $HgCl_2$-induced inhibition of PAH uptake in a dose-dependent manner at the concentration ranges of 0.01-0.1%. $HgCl_2$-induced inhibition of $Na^+-K^+$-ATPase activity and ATP depletion were significantly prevented by 0.05% SbG. These results suggest that SbG prevents $HgCl_2$-induced alterations in membrane transport function in rabbit renal cortical slices. Such protective effects of SbG may be attributed to inhibition of peroxidation of membrane lipid.

The Lipid Efflux Effects of Dichloromethane Extract from Orostachys japonicus in 3T3-L1 Adipocyte Cells (3T3-L1 지방세포에 대한 와송 디클로로메탄 추출물의 지질 대사 개선에 관한 연구)

  • Kim, Soo-Hwan;Lee, Hyeong-Seon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.4
    • /
    • pp.514-520
    • /
    • 2019
  • This study investigated the improved lipid metabolism effect of 3T3-L1 cells induced by adipocytes using the dichloromethane (DCM) fraction in the organic solvent extract of Wassong (Orostachys japonicus). To confirm the cell cytotoxicity, each of 6 fractions of organic solvent extracts (EtOH, Hexane, DCM, EtOAc, BuOH, and H2O) was examined using MTS assay. As a result, it was confirmed that the DCM extract was stable over the whole range of concentrations, and a DCM fraction was used to confirm the improved lipid metabolism effect. Lipid excretion was measured to confirm the change of lipid metabolism. 3T3-L1 cells induced by adipocytes were treated with DCM extract and stained with oil-red O to evaluate lipid accumulation. As a result, it was confirmed that the lipid efflux was significantly improved. In order to confirm the mechanism of lipid efflux, the mRNA expressions of ABCA1 and ABCG1, which are lipid transport proteins, were confirmed by real-time PCR. Therefore, the present study confirmed that the DCM extract from Orostachys japonicus has the effect of improving the lipid metabolism on 3T3-L1 adipocytes. In addition, the results of this study will be used as the basis for the development of functional foods using Orostachys japonicus and also for conducting research on the detailed mechanisms.

Effects of Local Anesthetics on Electron Transport and Generation of Superoxide Radicals in Mitochondria (국소마취제가 Mitochondria에서의 전자이동 및 Superoxide Radicals의 생성에 미치는 영향)

  • Lee, Chung-Soo;Shin, Yong-Kyoo;Lee, Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.113-121
    • /
    • 1987
  • Local anesthetics were investigated for their effects on mitochondrial electron transport system, production of superoxide radical from submitochondrial particles and malondialdehyde production through lipid per oxidation. Local anesthetics had various effects on activities of enzymes in electron transport chain. The activities of NADH dehydrogenase, NADH oxidase and NADH-ubiquinone oxidoreductase were effectively inhibited by lidocaine, procaine and dibucaine but slightly influenced by cocaine. The activities of succinate dehydrogenase, succinate-cytochrome c oxidoreductase and succinate-ubiquinone oxidoreductase were inhibited by lidocaine and dibucaine, but the succinate oxidase activity was stimulated by local anesthetics. Both dihydroubiquinone-cytochrome c oxidoreductase and cytochrome c oxidase activities were inhibited by local anesthetics. In these reactions, the response of Complex I segment to local anesthetics was greater than other Complex segments. Local anesthetics inhibited both the superoxide production from submitochondrial particles supplemented with succinate or NADH and the enhanced production of superoxide radicals by antimycin. The malondialdehyde production by oxygen free radicals was inhibited by local anesthetics. These results suggest that the inhibition of superoxide and malondialdehyde production caused by local anesthetics may be brought by suppression of the electron transport in mitochondria at sites in or near complex I segment.

  • PDF