References
- Burton, T.R., and Gibson, S.B. (2009). The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ. 16, 515-523 https://doi.org/10.1038/cdd.2008.185
- Dodo, K., Minato, T., Noguchi-Yachide, T., Suganuma, M., and Hashimoto, Y. (2008). Antiproliferative and apoptosis-inducing activities of alkyl gallate and gallamide derivatives related to (-)-epigallocatechin gallate. Bioorg. Med. Chem. 16, 7975-7982 https://doi.org/10.1016/j.bmc.2008.07.063
- Ermakova, S.P., Kang, B.S., Choi, B.Y., Choi, H.S., Schuster, T.F., Ma, W.Y., Bode, A.M., and Dong, Z. (2006). (-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res. 66, 9260-9269 https://doi.org/10.1158/0008-5472.CAN-06-1586
- Galati, G., Lin, A., Sultan, A.M., and O'Brien, P.J. (2006). Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. Free Radic. Biol. Med. 40, 570-580 https://doi.org/10.1016/j.freeradbiomed.2005.09.014
- Goodin, M.G., and Rosengren, R.J. (2003). Epigallocatechin gallate modulates CYP450 isoforms in the female Swiss-Webster mouse. Toxicol. Sci. 76, 262-270 https://doi.org/10.1093/toxsci/kfh001
- Isbrucker R.A., Edwards, J.A., Wolz, E., Davidovich, A., and Bausch, J. (2006). Safety studies on epigallocatechin gallate (EGCG) preparations. Part 3: teratogenicity and reproductive toxicity studies in rats. Food Chem. Toxicol. 44, 651-661 https://doi.org/10.1016/j.fct.2005.11.002
- Ji, C., and Kaplowitz, N. (2006). ER stress: can the liver cope? J. Hepatol. 45, 321-333 https://doi.org/10.1016/j.jhep.2006.06.004
- Jiang, H.Y., Wek, S.A., McGrath, B.C., Lu, D., Hai, T., Harding, H.P., Wang, X., Ron, D., Cavener, D.R., and Wek, R.C. (2004). Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol. Cell. Biol. 24, 1365-1377 https://doi.org/10.1128/MCB.24.3.1365-1377.2004
- Komissarova, E.V., Li, P., Uddin, A.N., Chen, X., Nadas, A., and Rossman, T.G. (2008). Gene expression levels in normal human lymphoblasts with variable sensitivities to arsenite: identification of GGT1 and NFKBIE expression levels as possible biomarkers of susceptibility. Toxicol. Appl. Pharmacol. 226, 199-205 https://doi.org/10.1016/j.taap.2007.09.004
- Kuzuhara, T., Sei, Y., Yamaguchi, K., Suganuma, M., and Fujiki, H. (2006). DNA and RNA as new binding targets of green tea catechins. J. Biol. Chem. 281, 17446-17456 https://doi.org/10.1074/jbc.M601196200
- Lai, E., Teodoro, T., and Volchuk, A. (2007). Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology 22, 193-201 https://doi.org/10.1152/physiol.00050.2006
- Lambert, J.D., Sang, S., and Yang, C.S. (2007). Possible controversy over dietary polyphenols: benefits vs risks. Chem. Res. Toxicol. 20, 583-585 https://doi.org/10.1021/tx7000515
- Marciniak, S.J., Yun, C.Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., Harding, H.P., and Ron, D. (2004). CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066-3077 https://doi.org/10.1101/gad.1250704
- Nichols, K.D., and Kirby, G.M. (2008). Microarray analysis of hepatic gene expression in pyrazole-mediated hepatotoxicity: identification of potential stimuli of Cyp2a5 induction. Biochem. Pharmacol. 75, 538-551 https://doi.org/10.1016/j.bcp.2007.09.009
- Outinen, P.A., Sood, S.K., Pfeifer, S.I., Pamidi, S., Podor, T.J., Li, J., Weitz, J.I., and Austin, R.C. (1999). Homocysteine-induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells. Blood 94, 959-967
- Pacheco, C.D., and Lieberman, A.P. (2008). The pathogenesis of Niemann-Pick type C disease: a role for autophagy? Expert Rev. Mol. Med. 10, e26 https://doi.org/10.1017/S146239940800080X
- Schmidt, M., Schmitz, H.J., Baumgart, A., Guedon, D., Netsch, M.I., Kreuter, M.H., Schmidlin, C.B., and Schrenk, D. (2005). Toxicity of green tea extracts and their constituents in rat hepatocytes in primary culture. Food Chem. Toxicol. 43, 307-314. https://doi.org/10.1016/j.fct.2004.11.001
- Shannan, B., Seifert, M., Leskov, K., Willis, J., Boothman, D., Tilgen, W., and Reichrath, J. (2006). Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ. 13, 12-19 https://doi.org/10.1038/sj.cdd.4401779
- Sieber, M., Hoffmann, D., Adler, M., Vaidya, V.S., Clement, M., Bonventre, J.V., Zidek, N., Rached, E., Amberg, A., Callanan, J.J., Dekant, W., and Mally, A. (2009). Comparative analysis of novel noninvasive renal biomarkers and metabonomic changes in a rat model of gentamicin nephrotoxicity. Toxicol. Sci. 109, 336-349 https://doi.org/10.1093/toxsci/kfp070
- Vittal, R., Selvanayagam, Z.E., Sun, Y., Hong, J., Liu, F., Chin, K.V., and Yang, C.S. (2004). Gene expression changes induced by green tea polyphenol (-)-epigallocatechin-3-gallate in human bronchial epithelial 21BES cells analyzed by DNA microarray. Mol. Cancer Ther. 3, 1091-1099
- Wang, X.Z., Lawson, B., Brewer, J.W., Zinszner, H., Sanjay, A., Mi, L.J., Boorstein, R., Kreibich, G., Hendershot, L.M., and Ron, D. (1996). Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol. Cell. Biol. 16, 4273-4280 https://doi.org/10.1128/MCB.16.8.4273
Cited by
- Changes of miRNA and mRNA expression in HepG2 cells treated by epigallocatechin gallate vol.6, pp.2, 2010, https://doi.org/10.1007/s13273-010-0024-3
- Gene Expression Analysis for Statin-induced Cytotoxicity from Rat Primary Hepatocytes vol.8, pp.1, 2010, https://doi.org/10.5808/GI.2010.8.1.041
- Epigallocatechin-3-Gallate (EGCG) Promotes Autophagy-Dependent Survival via Influencing the Balance of mTOR-AMPK Pathways upon Endoplasmic Reticulum Stress vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/6721530