• Title/Summary/Keyword: Lipid Synthesis

Search Result 363, Processing Time 0.029 seconds

Oxidative Stress and Antioxidant Activities of Intertidal Macroalgae in Korea

  • Park, Jung-Jin;Han, Tae-Jun;Choi, Eun-Mi
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • The oxidative stress level and antioxidant activities in two green algae (Ulva pertusa and Ulva linza), two brown algae (Agarum cribrosum and Dictyota dichotoma), and three red algae (Grateloupia lanceolata, Carpopeltis affinis, and Gracilaria verrucosa) collected from intertidal regions of Korea were assessed. In the two green algae, although the total glutathione content was not as high as that of the brown algae, the glutathione pool was extremely reduced, and the glutathione reductase (GRd)/glutathione peroxidase (GPx) activity ratio was high, which apparently plays an important role for protection against oxidative damage, as manifested by low lipid peroxidation. In the brown algae, which exhibited a low lipid peroxidation level that was comparable to the green algal species, the highest glutathione content, together with high GPx activity, appears to be the most important factor in their antioxidant protection. The red algal species exhibited extremely high lipid peroxidation levels. They also contained the lowest and most oxidized glutathione among the species, as well as the lowest GRd activity. In spite of the marked difference in the glutathione content, the significant difference in the activity of ${\gamma}$-glutamylcysteine ligase, the rate limiting enzyme for glutathione synthesis, among the species was not exhibited. Our results suggest that there is a significant difference in the levels of oxidative stress and antioxidant capacity among the algal species, and that the glutathione system, especially the efficiency of glutathione recycling, plays a vital role in antioxidative protection in algal species.

Effect of CLA (Conjugated Linoleic Acid) on the Anti-Atherosclerotic actors in Human Hepatoma HepG2 Cells (간암세포 (HepG2 Cell)에서의 식이성 CLA(Conjugated Linoleic Acid)가 항동맥경화성 인자에 미치는 영향)

  • 오현희;문희정;이명숙
    • Journal of Nutrition and Health
    • /
    • v.37 no.3
    • /
    • pp.182-192
    • /
    • 2004
  • Conjugated linoleic acid (CLA) is the mixture of positional and geometric isomers of linoleic acid (LA), which is found abundantly in dairy products and meats. This study was performed to investigate the anticarcinogenic effect of CLA in HepG2 hepatoma cells. HepG2 cell were treated with LA and CLA at the various concentrations of 10, 20, 40, 80 uM each at different incubation times. After each incubation times, cell proliferation, fatty acids incorporation into cell, peroxidation and postaglandin E$_2$ (PGE$_2$) and thromboxane $A_2$ (TXA$_2$) for the eicosanoid metabolism were measured. LA treated HepG2 cells were increased cell growth 6 - 70% of control whereas CLA increased cell death the half of those in LA group (p 〈 0.001). LA and CLA were incorporated very well into the cellular membranes four times higher than in control according to concentration and longer incubation times. Moreover, LA synthesized significantly arachidonic acids corresponding with LA concentration compared to CLA supplementation. The supplementation with LA increased intracellular lipid peroxides concentration corresponding with LA concentration and five times higher than those in CLA significantly at any incubation times (p 〈 0.001). PGE$_2$ and TXA$_2$ levels were three to twenty times lower in condition of CLA treatments than LA, respectively. Overall, the dietary CLA might change the HepG2 cell growth by the changes of cell composition, production of lipid peroxide. Since CLA have not changed the levels of arachidonic acid of cell membrane, which was sources of eicosanoids, eicosanoid synthesis was not increased in CLA compared to LA. Our results was suggest CLA has a possibility to protect the progress of atherosclerosis because CLA does not produce lipid production and endothelial contraction factors in liver.

The protective effects of Aster yomena (Kitam.) Honda on high-fat diet-induced obese C57BL/6J mice

  • Kim, Min Jeong;Kim, Ji Hyun;Lee, Sanghyun;Kim, Bohkyung;Kim, Hyun Young
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.46-59
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Aster yomena (Kitam.) Honda (AY) has remarkable bioactivities, such as antioxidant, anti-inflammation, and anti-cancer activities. On the other hand, the effects of AY against obesity-induced insulin resistance have not been reported. Therefore, this study examined the potential of AY against obesity-associated insulin resistance in high-fat diet (HFD)-fed mice. MATERIALS/METHODS: An obesity model was established by feeding C57BL/6J mice a 60% HFD for 16 weeks. The C57BL6/When ethyl acetate fraction from AY (EFAY) at doses of 100 and 200 mg/kg/day was administered orally to mice fed a HFD for the last 4 weeks. Normal and control groups were administered water orally. The body weight and fasting blood glucose were measured every week. Dietary intake was measured every other day. After dissection, blood and tissues were collected from the mice. RESULTS: The administration of EFAY reduced body and organ weights significantly compared to HFD-fed control mice. The EFAY-administered groups also improved the serum lipid profile by decreasing the triglyceride, total cholesterol, and low-density lipoprotein compared to the control group. In addition, EFAY ameliorated the insulin resistance-related metabolic dysfunctions, including the fasting blood glucose and serum insulin level, compared to the HFD-fed control mice. The EFAY inhibited lipid synthesis and insulin resistance by down-regulation of hepatic fatty acid synthase and up-regulation of the AMP-activated protein kinase pathway. EFAY also reduced lipid peroxidation in the liver, indicating that EFAY protected hepatic injury induced by obesity. CONCLUSIONS: These results suggest that EFAY improved obesity-associated insulin resistance by regulating the lipid and glucose metabolism, suggesting that AY could be used as a functional food to prevent obesity and insulin resistance.

Alteration of Lipid Metabolism Related Proteins in Liver of High-Fat Fed Obese Mice (고지방식이 비만쥐의 지방관련 단백질의 변화)

  • Seo, Eun-Hui;Han, Ying;Park, So-Young;Koh, Hyong-Jong;Lee, Hye-Jeong
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1019-1026
    • /
    • 2010
  • Obesity and being overweight are strongly associated with the development of metabolic disease such as diabetes, hypertension, dyslipidemia. High-fat diet (HFD) is one of the most important factors which cause obesity. In this study, C57BL/6 mice were treated with a HFD for 22 weeks in order to induce obesity and hyperglycemia. Twenty-two weeks later, body weight and plasma glucose level of the HFD group were significantly increased, compared with the normal diet (ND) group. Intra-peritoneal glucose tolerance test (IPGTT) showed glucose intolerance in the HFD group compared with the ND group. These results confirmed that a HFD induced obesity and hyperglycemia in C57BL/6 mice. Plasma levels of triglyceride (TG) and total cholesterol (TC) were increased in the HFD group compared with the ND group. Hepatic levels of TG and TC were also increased by a HFD. To investigate the alteration of lipid metabolism in liver, proteins which are related to lipid metabolism were observed. Among lipid synthesis related enzymes, fatty acid synthase (FAS) and glycerol phosphate acyl transferase (GPAT) were significantly increased in the HFD group. Apolipoprotein B (apoB) and microsomal triglyceride transport protein (MTP), which are related to lipid transport, were significantly increased in the HFD group. Interestingly, protein level and phosphorylation of AMP-activated protein kinase (AMPK), which is known as a metabolic regulator, were significantly increased in the HFD group compared with the ND group. In the present study we suggest that HFD may physiologically increase the proteins which are related with lipid synthesis and lipid transport, but that HFD may paradoxically induce the activation of AMPK.

Induction of Heat Shock Protein 70 Inhibits Tumor Necrosis $Factor{\alpha}-induced$ Lipid Peroxidation in Rat Mesangial Cells (Heat Shock Protein 70이 흰쥐 배양 혈관간 세포에서 관찰되는 $TNF{\alpha}$에 의한 지질과산화에 미치는 보호 효과)

  • Ha, Hun-Joo;Park, Young-Mee;Ahn, Young-Soo;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.323-331
    • /
    • 1995
  • Monocyte/macrophage infiltration is the well known initial features associated with the development of glomerular disease including non-immune mediated nephropathy. Tumor necrosis factor ${\alpha}(TNF{\alpha})$, a cytokine produced primarily by monocyte/macrophage, exhibits similar effects as observed at the initial stages and during the progression of glomerular injury. Because the mesangial cells are target cells for glomerular injury, the present study examined the effect of $TNF{\alpha}$ on glomerular mesangial cell membrane lipid peroxidation as an index of cytotoxicity attributing to $TNF{\alpha}$. Primary culture of rat mesangial cell was established by incubation of glomeruli isolated from male Sprague-Dawley rat kidneys utilizing a standard sieving method. The levels of lipid peroxides in the mesangial cells were quantitated by malondialdehyde- thiobarbituric acid adduct formation. During an 8 hour incubation at $37^{\circ}C$, $TNF{\alpha}$ at 10 to 10,000 units/ml increased the levels of lipid peroxides dose dependently. Western blot analysis demonstrated that a short thermal stress induced heat shock response and the synthesis of heat shock protein 70(hsp70) in this mesangial cells. Further, this induction of hsp 70 prevented increase of lipid peroxides in the mesangial cells exposed to $TNF{\alpha}$. These data suggest that $TNF{\alpha}-induced$ lipid peroxidation in the mesangial cells may have pathophysiological relevance to glomerular injury and prior induction of heat shock response may play a role in the cellular resistance against $TNF{\alpha}-induced$ glomerular injury.

  • PDF

Study of in Vivo Serum Lipid Regulation with Ulmus macrocarpa Hance Extract in Rats (왕느릅나무 추출물에 의한 설치류 혈중지질 개선 효과에 대한 연구)

  • Hwang, Mi Sun;Kim, Tae Hee;Lee, Jeong Jun;Kwon, JungKee;Lee, Jin Young
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.542-549
    • /
    • 2020
  • A previous study reported that Ulmus macrocarpa Hance water extract (UME) can improve hyperlipid metabolism and the involvement of suppressed lipid synthesis through adenosine monophosphate-activated protein kinase (AMPK) pathway regulation was suggested. Further exploration of the lipid metabolism between liver and peripheral tissue was necessary to confirm that work, and so this study aimed to extend the possibility that UME can regulate serum lipids. After a 6-week in vivo trial of oral administration of UME to rats with induced hyperlipidemia, serum levels of triglyceride (TG) and total cholesterol (TC) were seen to decrease while HDL cholesterol increased. The UME administrations also decreased the TC and TG levels from the control in liver analysis. However, the suggestion that UME regulates the AMPK pathway to improve hyperlipid states through the suppression of hepatic lipogenesis seems to be only one part of the extract's effect. Indeed, serum concentrations of apolipoproteins A and B were returned to baseline levels of the control group in response to UME administration whilst the liver lipid content was much reduced; this cannot occur through the suggested suppression of hepatic lipogenesis alone. Therefore, a possible mechanism of UME could be that it improves blood circulation by modulating serum lipid levels through both the prior stimulation of lipid oxidation and the suppression of hepatic lipogenesis.

Proteomic Changes by Acupuncture Stimulation at HT7 in the Hippocampus of Rat Pups (신문혈 자침이 어린 백서 해마의 단백질 발현에 미치는 영향)

  • Bae, Chang-Hwan;Kim, Dong-Soo;Kim, Seung-Tae
    • Korean Journal of Acupuncture
    • /
    • v.29 no.2
    • /
    • pp.260-270
    • /
    • 2012
  • Objectives : Hippocampus, a region of temporal lobe, plays an important role in the pathogenic mechanisms of brain diseases such as Alzheimer's disease, depression and temporal lobe epilepsy. This research is designed to investigate hippocampal changes after acupuncture stimulation at Shinmun(HT7) using 2-dimensional gel electrophoresis(2-DE). Methods : On postnatal-day 15, rat pups were randomly devided into Normal(NOR) or HT7 group. All of Pups kept with their mothers for 7 days, but pups in HT7 group received acupuncture stimulation at HT7 daily. On postnatal-day 21, hippocampus of each rat pup was dissceted 30 minutes after last acupuncture stimulation and the protein expressions were investigated using 2-DE. Results : After acupuncture stimulation at HT7, expression of 20 proteins were significantly increased. Succinate semialdehyde dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase-like, transketolase, aconitate hydratase and phosphoglucomutase-1 were related to glucose methabolism. Eukaryotic initiation factor(eIF) 4A-II, eIF 4A-III, mitochondrial Tu translation elongation factor and chain A of crystal structure of the 70-Kda heat shock cognate protein involve in the protein synthesis in ribosome. Tubulin ${\beta}$-4 chain, tubulin T ${\beta}$-15 and tubulin ${\alpha}$-1B chain comprise cytoskeleton. Glutathione S-transferase(GST) ${\omega}$-1, GST P and GST Yb-3 can reduce oxidative stress. ${\beta}$-soluble N-ethylmaleimide-sensitive fusion protein attachment protein is required for vesicular transport between the endoplasmic reticulum and the Golgi apparatus, glycerol-3-phosphate dehydrogenase plays a major role in lipid biosynthesis, creatine kinase U-type catalyses the conversion of creatine and consumes adenosine triphosphate to create phosphocreatine and adenosine diphosphate. Platelet-activating factor acetylhydrolase IB subunit alpha and voltage depedent anion-selective channel protein 2 were also increased. Conclusions : The results suggest that acupuncture stimulation at HT7 may enhance glucose and lipid metabolism, protein synthesis, cytoskeletal substance and anti-oxidative stress in hippocampus.

Transcriptomic Analysis of Oryza sativa Leaves Reveals Key Changes in Response to Magnaporthe oryzae MSP1

  • Meng, Qingfeng;Gupta, Ravi;Kwon, Soon Jae;Wang, Yiming;Agrawal, Ganesh Kumar;Rakwal, Randeep;Park, Sang-Ryeol;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • v.34 no.4
    • /
    • pp.257-268
    • /
    • 2018
  • Rice blast disease, caused by Magnaporthe oryzae, results in an extensive loss of rice productivity. Previously, we identified a novel M. oryzae secreted protein, termed MSP1 which causes cell death and pathogen-associated molecular pattern (PAMP)-triggered immune (PTI) responses in rice. Here, we report the transcriptome profile of MSP1-induced response in rice, which led to the identification of 21,619 genes, among which 4,386 showed significant changes (P < 0.05 and fold change > 2 or < 1/2) in response to exogenous MSP1 treatment. Functional annotation of differentially regulated genes showed that the suppressed genes were deeply associated with photosynthesis, secondary metabolism, lipid synthesis, and protein synthesis, while the induced genes were involved in lipid degradation, protein degradation, and signaling. Moreover, expression of genes encoding receptor-like kinases, MAPKs, WRKYs, hormone signaling proteins and pathogenesis-related (PR) proteins were also induced by MSP1. Mapping these differentially expressed genes onto various pathways revealed critical information about the MSP1-triggered responses, providing new insights into the molecular mechanism and components of MSP1-triggered PTI responses in rice.

Improved Production of Long-Chain Fatty Acid in Escherichia coli by an Engineering Elongation Cycle During Fatty Acid Synthesis (FAS) Through Genetic Manipulation

  • Jeon, Eunyoung;Lee, Sunhee;Lee, Seunghan;Han, Sung Ok;Yoon, Yeo Joon;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.990-999
    • /
    • 2012
  • The microbial biosynthesis of fatty acid of lipid metabolism, which can be used as precursors for the production of fuels of chemicals from renewable carbon sources, has attracted significant attention in recent years. The regulation of fatty acid biosynthesis pathways has been mainly studied in a model prokaryote, Escherichia coli. During the recent period, global regulation of fatty acid metabolic pathways has been demonstrated in another model prokaryote, Bacillus subtilis, as well as in Streptococcus pneumonia. The goal of this study was to increase the production of long-chain fatty acids by developing recombinant E. coli strains that were improved by an elongation cycle of fatty acid synthesis (FAS). The fabB, fabG, fabZ, and fabI genes, all homologous of E. coli, were induced to improve the enzymatic activities for the purpose of overexpressing components of the elongation cycle in the FAS pathway through metabolic engineering. The ${\beta}$-oxoacyl-ACP synthase enzyme catalyzed the addition of acyl-ACP to malonyl-ACP to generate ${\beta}$-oxoacyl-ACP. The enzyme encoded by the fabG gene converted ${\beta}$-oxoacyl-ACP to ${\beta}$-hydroxyacyl-ACP, the fabZ catalyzed the dehydration of ${\beta}$-3-hydroxyacyl-ACP to trans-2-acyl-ACP, and the fabI gene converted trans-2-acyl-ACP to acyl-ACP for long-chain fatty acids. In vivo productivity of total lipids and fatty acids was analyzed to confirm the changes and effects of the inserted genes in E. coli. As a result, lipid was increased 2.16-fold higher and hexadecanoic acid was produced 2.77-fold higher in E. coli JES1030, one of the developed recombinants through this study, than those from the wild-type E. coli.

Efficacy of nobiletin in improving hypercholesterolemia and nonalcoholic fatty liver disease in high-cholesterol diet-fed mice

  • Kim, Young-Je;Yoon, Dae Seong;Jung, Un Ju
    • Nutrition Research and Practice
    • /
    • v.15 no.4
    • /
    • pp.431-443
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Nobiletin (NOB), a citrus flavonoid, is reported to have beneficial effects on cardiovascular and metabolic health. However, there is limited research investigating the effect of long-term supplementation with low-dose NOB on high-cholesterol diet (HCD)-induced hypercholesterolemia and non-obese nonalcoholic fatty liver disease (NAFLD). Therefore, we investigated the influence of NOB on hypercholesterolemia and NAFLD in HCD-fed mice. SUBJECTS/METHODS: C57BL/6J mice were fed a normal diet (ND) or HCD (35 kcal% fat, 1.25% cholesterol, 0.5% cholic acid) with or without NOB (0.02%) for 20 weeks. RESULTS: HCD feeding markedly reduced the final body weight compared to ND feeding, with no apparent energy intake differences. NOB supplementation suppressed HCD-induced weight loss without altering energy intake. Moreover, NOB significantly decreased the total cholesterol (TC) levels and the low-density lipoprotein (LDL)/very-LDL-cholesterol to TC ratio, and increased the high-density lipoprotein-cholesterol/TC ratio in plasma, compared to those for HCD feeding alone. The plasma levels of inflammatory and atherosclerosis markers (C-reactive protein, oxidized LDL, interleukin [IL]-1β, IL-6, and plasminogen activator inhibitor-1) were significantly lower, whereas those of anti-atherogenic adiponectin and paraoxonase were higher in the NOB-supplemented group than in the HCD control group. Furthermore, NOB significantly decreased liver weight, hepatic cholesterol and triglyceride contents, and lipid droplet accumulation by inhibiting messenger RNA expression of hepatic genes and activity levels of cholesterol synthesis-, esterification-, and fatty acid synthesis-associated enzymes, concomitantly enhancing fatty acid oxidation-related gene expression and enzyme activities. Dietary NOB supplementation may protect against hypercholesterolemia and NAFLD via regulation of hepatic lipid metabolism in HCD-fed mice; these effects are associated with the amelioration of inflammation and reductions in the levels of atherosclerosis-associated cardiovascular markers. CONCLUSIONS: The present study suggests that NOB may serve as a potential therapeutic agent for the treatment of HCD-induced hypercholesterolemia and NAFLD.