• Title/Summary/Keyword: Linked

Search Result 7,867, Processing Time 0.029 seconds

Ethylene Polymerization Using (n-BuCp)$_{2}ZrCl_{2}$ Catalyst Activated with a Cross-linked MAO-Supported Cocatalyst

  • Yoon, Keun-Byoung
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.336-341
    • /
    • 2004
  • A new type of cross-linked methylaluminoxane (MAO)-supported cocatalyst has been prepared by the reaction of a soluble MAO and a cross-liking agent such as an aromatic diamine compound. The cross-linked MAO-supported cocatalyst was used for the polymerization of ethylene in the presence of bis(n-butylcyclopentadienyl) zirconium dichloride, (n-BuCp)$_2$ZrCl$_2$. The catalyst activity of (n-BuCp)$_2$ZrCl$_2$ cocatalyzed with the new supported cocatalyst was higher than that of the commercial silica-supported MAO (SMAO) cocatalyst. The molecular weight and the bulk density of the polyethylene produced by using the new supported cocatalyst were slightly higher than those of polyethylene synthesized using commercial SMAO. The resulting polyethylene particles possess spherical morphologies with very few fine particles.

Synthesis and Characterization of Crosslinked Polyacrylates Containing Cubane and Silyl Groups

  • Mahkam Mehrdad;Assadi Mohammad;Mohammadzadeh Rana
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.34-37
    • /
    • 2006
  • Attaching the organosilyl groups to macromolecular chains of 2-hydroxyethyl methacrylate (HEMA) should lead to important modifications of polymer properties. t-$BuMe_{2}Si$ and cubane-l, 4-dicarboxylic acid (CDA) were covalently linked with 2-hydroxyethyl methacrylate (HEMA). The silyl-linked HEMA is abbreviated as TSMA, while cubane-l ,4-dicarboxylic acid (CDA) linked to two HEMA groups is the cross-linking agent (CA). Free radical cross-linking copolymerization of TSMA and HEMA with various ratios of CA as the cross-linking agent was carried out at 60-70$^{circ}C$. The compositions of the cross-linked, three-dimensional polymers were determined by FTIR spectroscopy. The glass transition temperature ($T_{g}$) of the network polymers was determined calorimetrically. The $T_{g}$ of the network polymer increased with increasing cross-linking degree.

Excitation Energy Transfer Rate Constants in meso-meso Linked Zn(II) Porphyrin Arrays with Energy Accepting 5,15-Bisphenylethynylated Zn(II) Porphyrin

  • Ko, Da-Mee;Kim, Hee-Young;Park, Jin-Hee;Kim, Dong-Ho;Sim, Eun-Ji
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1505-1511
    • /
    • 2005
  • The excitation energy transfer process occurring in energy donor-acceptor linked porphyrin array system is theoretically simulated using the on-the-fly filtered propagator path integral method. The compound consists of an energy donating meso-meso linked Zn(II) porphyrin array and an energy accepting 5,15-bisphenylethynylated Zn(II) porphyrin, in which the donor array and the acceptor are linked via a 1,4-phenylene spacer. Real-time path integral simulations provide time-evolution of the site population and the excitation energy transfer rate constants are determined. Simulations and experiments show an excellent agreement indicating that the path integration is a useful tool to investigate the energy transfer dynamics in molecular assemblies.

Effect of Antimicrobial Activity of the Glutaraldehyde Cross-linked Glucosamine (글루코사민-글루타르알데히드 가교결합체의 항균 효과)

  • Lee, Choon Geun;Hwang, You Jin;Park, Jae Kweon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.53-61
    • /
    • 2014
  • This study was investigated the antimicrobial activity of glutaraldehyde cross-linked glucosamine. Glutaraldehyde was used as a cross-linker which specifically combines an amine-group of molecules. To optimize the mixing ratio of glutaraldehyde and glucosamine, mixing ratio was set up 1:1, 2:1, 3:1 and 0.5:1 in molarity, respectively. The optimum mixing ratio of glucosamine and glutaraldehyde was found to be 3:1 using thin layer chromatography based on the production of complex. Glucosamine-glutaraldehyde cross-linked complex (Ggcc) revealed significant antimicrobial activity toward PWG than F1, both microbial strains were isolated from porcine semen as antibiotics resistance bacteria (ARB). These results clearly demonstrate that Ggcc has potential bactericidal activity toward ARB in porcine semen.

Raman Spectra of Nitrophenol Molecules Included in Cyclodextrin Polymers Cross-linked with Epichlohydrine

  • Choi, Seong-Ho;Kim, Su-Yeon;Zhang, Yu-Ping;Lee, Kwang-Pill
    • Analytical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2004
  • Inclusion complexes of the p-nitrophenol with ${\beta}$-cyclodextrin (CD), sulfated ${\beta}$-CD, and ${\beta}$-CD polymer cross-linked with epichlorohydrine (EP) were prepared and characterized by Raman spectroscopy. The intensity of vibration peaks of the C-O and C-N at 1284 and $856cm^{-1}$ of the p-nitrophenol in the presence of EP-linked CD polymer was remarkably increased, respectively. The vibration modes at 1284 and $856cm^{-1}$ are assigned to the out-of phase C-C-O stretching mode and the C-N stretching mode, respectively. The vibration peaks at 1284 and $856cm^{-1}$ increased with increasing the content of EP-linked CD polymers, while decreased with increasing the p-nitrophenol content. Furthermore, the vibration mode of the $NO_2$ symmetric stretch at $1344cm^{-1}$ enhanced with increasing the content of p-nitrophenol.

Preparation of Highly Cross-Linked, Monodisperse Poly(methyl methacrylate) Microspheres by Dispersion Polymerization; Part II. Semi-continuous Processes

  • Lee, Ki-Chang;Lee, Sang-Yun
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.293-302
    • /
    • 2008
  • In our previous publication, the problem of particle deformation and coagulation at the nucleation stage in the presence of cross-linker was intensely studied by seeded batch dispersion polymerization of methyl methacrylate (MMA). In the present work, highly cross-linked, monodisperse PMMA particles were prepared under various reaction conditions by seeded semi-continuous process. Monodisperse, $6.5{\mu}m$-diameter PMMA particles containing up to 8 wt% of DVB or EGDMA were successfully made by seeded semi-continuous process and multi-semi-continuous addition process, respectively. Therefore, this study shows that seeded semi-continuous process is more effective and efficient to prepare highly cross-linked, monodisperse particles than non-seeded and seeded batch processes.

Preparation of Highly Cross-linked, Monodisperse Poly(methyl methacrylate) Microspheres by Dispersion Polymerization; Part I. Batch Processes

  • Lee, Ki-Chang;Lee, Sang-Yun
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.244-255
    • /
    • 2007
  • Nucleation is the most sensitive stage in the preparation of highly cross-linked, monodisperse microspheres by dispersion polymerization, since the addition of a small amount of cross-linker results in particle deformation and coagulation. To overcome these problems, $5\;{\mu}m$ poly(methyl methacrylate) seed particles prepared by dispersion polymerization were used in the preparation of mono disperse, cross-linked PMMA particles containing up to 7 wt% divinylbenzene by seeded batch dispersion polymerization. Spherical particles with a narrow size distribution containing up to 8 wt% of EGDMA were prepared by seeded multi-batch dispersion polymerization processes. These particles were identified by scanning electron microscopy and DSC.

Fully connecting the Observational Health Data Science and Informatics (OHDSI) initiative with the world of linked open data

  • Banda, Juan M.
    • Genomics & Informatics
    • /
    • v.17 no.2
    • /
    • pp.13.1-13.3
    • /
    • 2019
  • The usage of controlled biomedical vocabularies is the cornerstone that enables seamless interoperability when using a common data model across multiple data sites. The Observational Health Data Science and Informatics (OHDSI) initiative combines over 100 controlled vocabularies into its own. However, the OHDSI vocabulary is limited in the sense that it combines multiple terminologies and does not provide a direct way to link them outside of their own self-contained scope. This issue makes the tasks of enriching feature sets by using external resources extremely difficult. In order to address these shortcomings, we have created a linked data version of the OHDSI vocabulary, connecting it with already established linked resources like bioportal, bio2rdf, etc. with the ultimate purpose of enabling the interoperability of resources previously foreign to the OHDSI universe.

A study on Linked data publishing of Open data in Seoul museum of history (서울역사박물관 오픈데이터의 Linked Data 발행에 관한 연구)

  • Do, Seulki;Han, Sangeun
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2013.08a
    • /
    • pp.119-122
    • /
    • 2013
  • 정부 및 기관, 개인에게 부가가치를 제공하는 공공 오픈데이터를 Linked Data로 발행하기 위한 다양한 시도들이 계속되고 있는 현 상황에서, 공공 오픈데이터인 '서울역사박물관의 유물 데이터'를 대상으로 데이터 정제 및 Linked Data로 발행하는 작업을 수행하여 발행 과정에서 나타나는 제약사항들에 대해 검토하였다. 이를 통해 정부 및 각 기관들, 개인이 데이터 발행자 및 이용자의 입장에서 공공 오픈데이터를 활용할 때 고려해야 할 사항들로 데이터 공개 시 데이터에 대한 명확한 설명 제시, 데이터 생애주기에 걸쳐 양질의 데이터 생산 및 공개, 데이터 발행자와 이용자 간의 지속적인 커뮤니케이션을 제언하였다.

  • PDF

A STUDY OF LINKED STAR OPERATIONS

  • Paudel, Lokendra;Tchamna, Simplice
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.837-851
    • /
    • 2021
  • Let R ⊆ L ⊆ S be ring extensions. Two star operations ${\ast}_1{\in}Star(R,S)$, ${\ast}_2{\in}Star(L,S)$ are said to be linked if whenever $A^{{\ast}_1}= R^{{\ast}_1}$ for some finitely generated S-regular R-submodule A of S, then $(AL)^{{\ast}_2}=L^{{\ast}_2}$. We study properties of linked star operations; especially when ${\ast}_1$ and ${\ast}_2$ are strict star operations. We introduce the notion of Prüfer star multiplication extension ($P{\ast}ME$) and we show that under appropriate conditions, if the extension R ⊆ S is $P{\ast}_1ME$ and ${\ast}_1$ is linked to ${\ast}_2$, then L ⊆ S is $P{\ast}_2ME$.