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The excitation energy transfer process occurring in energy donor-acceptor linked porphyrin array system is

theoretically simulated using the on-the-fly filtered propagator path integral method. The compound consists

of an energy donating meso-meso linked Zn(II) porphyrin array and an energy accepting 5,15-bisphenyl-

ethynylated Zn(II) porphyrin, in which the donor array and the acceptor are linked via a 1,4-phenylene spacer.

Real-time path integral simulations provide time-evolution of the site population and the excitation energy

transfer rate constants are determined. Simulations and experiments show an excellent agreement indicating

that the path integration is a useful tool to investigate the energy transfer dynamics in molecular assemblies.
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Introduction

A photosynthetic bacterium, such as Rhodobacter

Sphaeroides and Rs. Molichianum, maintains its life through
highly efficient chain reactions initiated by the absorption of
photon at light harvesting antenna complexes.1-3 The light-
harvesting complexes are molecular aggregates that consist
of peptides, chlorophylls, and carotenoids. Main function of
such molecular aggregates is to funnel the energy to the
reaction center in which primary charge separation takes
place. Therefore, molecular structures can absorb radiation,
transform it into electronic energy, and energy storage can be
achieved as artificial molecular photonic devices similar to
the light harvesting antenna complexes in nature.4-6

Recently, ZnA porphyrin molecular assemblies (Scheme 1)
have been successfully synthesized, which have a 5,15-
bisphenylethynylated porphyrin acceptor linked via a 1,4-
phenylene spacer at the nth meso-carbon of meso-meso

linked Zn(II) porphyrin donor array.6 The triple bond linkage
(ethynylated) at two meso positions of the acceptor
porphyrin moiety has elongated π-conjugation pathway
leading to the lowering of the excited electronic state of the
acceptor. This feature enables ZnA to realize unidirectional
energy transfer from photoexcited donor array (Zn) to
energy acceptor (A) upon reaching the terminal Zn(II)
porphyrin unit attached to A in ZnA through excitation
energy migration processes. The absorption spectra of these
hybrid porphyrin arrays in the Q-band region are essentially
given by the sum of the absorption spectra of meso-meso

linked Zn array and A.7,8 This feature indicates that
electronic interactions in the ground state between Zn and A
are weak due to a 1,4-phenylene spacer. Thus, it is possible
to excite the donor array selectively by tuning the excitation

wavelength to be resonance with the Q-band of the donor
array Zn and to observe the excitation energy transfer (EET)
within the system using transient absorption spectroscopy.6

The transient absorption spectra of ZnA were previously
reported by selective excitation of Zn, which revealed that
the energy transfer process from initially photoexcited Zn to
the ground state A occurs very fast and quantitatively. The
EET rate constants were estimated to be (2.5 ps)−1 for Z1A,
(3.3 ps)−1 for Z2A, (15.5 ps)−1 for Z3A, and (21 ps)−1 for Z6A,
(63 ps)−1 for Z12A, and (108 ps)−1 for Z24A, respectively. 

Although the energy transfer processes in ZnA systems
have been well-explored experimentally, theoretical studies
in such molecular photonic assemblies, however, are still in
a rudimentary stage. Although the EET is ubiquitous in
photosensitive materials, theoretical interpretation still relies
on the theories developed, almost five decades ago, by
Förster and Dexter. The Förster’s rate equation is based on
the Fermi’s golden rule, where the perturbation is the

Scheme 1. Molecular structure of ZnA systems.
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induced dipole-dipole interaction between molecules.9 Later,
Dexter has adapted the Förster’s theory to the case of solids,
incorporating ideas of electron-phonon interactions so as to
include discussions of Stokes’ shifts and exchange
interactions etc.10 In order to study the EET dynamics of the
molecular system embedded in condensed media, the
environmental effect should be taken into account. Since
molecules in solvents experience constantly changing
intermolecular interactions, the time-dependent solute-
solvent interactions cause time-dependent fluctuations of the
eigenstates and eigenvalues of the molecules of interest.
This can arise because identical molecules have different
local environments in media. As a consequence, in our case,
we have considered the environmental effect on the
excitation energy migration process in which the energy
fluctuations through the system-bath interactions are the
main contributions to the population transfer between the
eigenstates. Sim has developed the on-the-fly filtered propa-
gator functional (OFPF) path integral formalism,11,12 that is
based on the Feynman and Vernon’s influence functional
approach on a system coupled to a bath.13-15 By iteratively
propagating in real-time, the reduced density matrix of the
system of interest is calculated, which provides the time-
evolution of the site population in the donor and acceptor
state and, in turn, the EET rate constant. In this study, the
path integral method is used to explore the environmental
effect including solvent dynamics and polarization that
affect the dynamics of the EET process within the linear
geometry of ZnA (n = 1, 2, 4, 6, 12, and 24) system. 

This article is organized as follows: in Section 2, we
discuss the OFPF path integral method in which important
pathways contributing to the EET significantly are filtered
on-the-fly and are integrated to provide numerically accurate
site population over time. In Section 3, the time evolution of
site population of ZnA systems at various number of donor
units is evaluated. In order to explore the environmental
effect of the total system, the parameters for spectral density
are determined such that the tight-binding model system can
reproduce the experimentally observed transfer rate
constants. Concluding remarks are followed in Section 4.

Methodology

To model the EET processes in the ZnA system that is
composed of strongly coupled n donor units and a single
acceptor unit, the system is represented in terms of (n+1)
electronic states involved in the EET. Within the tight-
binding system-bath Hamiltonian model,16 in which each
site in the system represents a local exciton state, the system
Hamiltonian has an (n + 1) × (n + 1) matrix form

 (1)

where VDD and VDA are the donor-donor and donor-acceptor
coupling constants, respectively, and EDA is the energy
difference between the donor and acceptor electronic states.
Schematic diagram for the system Hamiltonian is drawn in
Scheme 2. While the interactions between the donor S1

states are rather strong (VDD = 570 cm−1), the donor-acceptor
coupling constant is weak (VDA = 29 cm−1).6,8 From the
absorption spectra of ZnA, the energy difference between
the donor and acceptor is evaluated as EDA = −1600 cm−1.6

The center-to-center distance between the acceptor and the
nearest donor is 12.7 Å and the donor-donor distance is 8.4 Å. 

Since the EET dynamics was measured in solution phase,
bath should be included to mimic dissipative environment.
While the bath consists of Q explicit harmonic modes, a
weak system-bath interaction is assumed within the linear
response limit. The total Hamiltonian is written as

 

(2)

where  stands for an electronic state with corresponding
grid point  while xj is the jth bath mode coordinate that is
coupled to the system with a coupling constant cj. 

In order to describe the EET dynamics, it is necessary to
evaluate the time-evolution of the reduced density matrix,
defined as

. (3)

Diagonal elements of the reduced density matrix represent
the population relaxation of the electronic states. In Eq. (3),
Trb denotes the trace with respect to all the degrees of
freedom of the bath. ρ(0) is the initial density matrix of the
system and bath in thermal equilibrium. 

Following Feynman and Vernon’s influence functional
formalism, discretization of paths in time rewrites Eq. (3) as
a multi-dimensional summation of the product of the system
propagator and the influence functional

, (4)

where the path from time 0 to t is discretized into Δt = t/N.
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Scheme 2. Schematic diagram of the tight-binding system model
of ZnA systems.
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the ith path. The summation in Eq. (4) runs over all possible
paths connecting (n+1) electronic states leading to Ltot = (n +
1)2N. The system propagator S accounts for the transport
within the system in the absence of a bath such that

 . (5)

Here, +(−) sign in subscripts depicts forward (backward)
propagating path segments, therefore, ( ) corresponds
to a grid point at time jΔt in the kth forward (backward) path.
One-dimensional forward and backward short-time
propagator is defined as

. (6)

On the other hand, the influence functional I arises from the
coupling to the environment, and for the harmonic bath, it
has the closed form as

,  (7)

where the influence interaction between jΔt and j'Δt time
points is

. (8)

Expressions for the influence coefficients  can be found
in Ref. 17.

In order to avoid redundant calculations of memory
interactions, the OFPF important path integral approach
rewrites Eq. (4) as a sum of products of history  and
propagator functional ,6

. (9)

For the density matrix at the present time t, the history term
involves interactions between the past time points (from 0 to
t − Δt) independent of t,

 = , (10)

while the propagator functional includes the interactions
between the present and the past time points

 = . (11)

Consequently, a significant amount of redundant calculations
for the history path segments can be avoided by storing each
configuration and corresponding weight, nonetheless the
number of total configurations increases exponentially as (n
+ 1)2N. This exponential scaling is resolved by utilizing the
rapid dissipation of the nonlocal interaction strength beyond
the bath memory time τm; it is sufficient to include only (n +
1)2Nm configurations for the times  without losing
numerical accuracy, leading to the saturation of the number
of paths to be included in the path integration.8 Furthermore,
the OFPF important path integration performs on-the-fly
filtering such that, up to t = τm, the number of paths increases
linearly with the propagation time.

Discussion

To describe the energy transfer dynamics in ZnA, we first
adopted the Förster mechanism by assuming the donor array
as one single chromophore, resulting in18,19

(12)

(13)

where n is the refractive index of the solvent, R is the center-
to-center distance between donor and acceptor, Φ is the
fluorescence quantum yield of donor, τ is the fluorescence
lifetime of donor, and κ is a dipole-dipole orientation factor.
Also, J is the spectral overlap integral. The Förster energy
transfer rate constants are estimated to be (5.2 ps)−1 for Z1A,
(6.9 ps)−1 for Z2A, (20 ps)−1 for Z3A, and (160 ps)−1 for
Z6A, (2300 ps)−1 for Z12A, and (49000 ps)−1 for Z24A,
respectively, which are really remote from the experi-
mentally observed values. These slow energy transfer rates
stem mainly from the intermolecular distance (R) term, that
means, the assumption that meso-meso linked porphyrin
array is one single chromophore is not appropriate. Thus, we
considered each porphyrin moiety in Zn as one single
chromophore. In this type of random walk model, we took a
matrix-formulated eigenvalue/eigenvector approach imple-
mented by Donohoe and coworkers, using empirical data to
predict the quantum efficiency.20,21 In our case, the energy
transfer scheme was given as the following, assuming that
the absorption characteristics of each porphyrin unit in the
donor are identical. 

The model yields pseudo-first-order production since k1

would be much faster than k2, which is predictable from the
fact that the excitation energy hopping rate in Zn is
estimated to be (~0.2 ps)–1 in the previous femtosecond
transient absorption anisotropy decay of Zn and the energy
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transfer rate from photoexcited Zn(II) porphyrin to free-base
porphyrin in the meso-meso phenylene linked porphyrin
heterodimer is evaluated to be (~3 ps)–1. Based on the above
assumptions, we can make following equation,

 (14)

where A* and Z1* represent the local excited state of A and
Z1, respectively. Although the energy transfer rates calculat-
ed from Eq. (14) are not so outrageous compared with the
experimental values evaluated from the transient absorption
measurements, they are still unsatisfactory.

To improve the correlation between the experimental
values and our simulation on the EET rates in the ZnA
system, we include time-dependent fluctuations of the
eigenstates and eigenvalues of the ZnA system using a
dissipative bath that is coupled to the system. Bath
properties influencing the dynamics of the system are
contained in the coupling constants {cj} in Eq. (2). Potential
parameters of porphyrin arrays can be easily obtained from
experiments; however, information regarding the system-
bath interaction is unavailable. Since the bath is composed
of semi-infinite number of modes, it is advantageous to use
the spectral density instead of explicit coupling constants.
With harmonic bath modes, the spectral density is defined as

.  (15)

The system-bath interaction is described by the ohmic
spectral density with the characteristic frequency of ωc and
the Kondo parameter ξ,22

. (16)

The more quantitative solvent characteristic, “solvent
reorganization energy, λ” is correlated with the spectral
density through the following relationship:

 (17)

where dDA is the distance between the donor and acceptor.
By substituting Eq. (13) and performing the integration, we
obtain the relationship between the Kondo parameter and the
solvent reorganization energy:

.  (18)

Since the spectral density represents the system-bath
interaction in the frequency domain, it has the maximum
intensity at the cutoff frequency and the overall intensity
increases with the bath friction, i.e., the Kondo parameter.
Although the overall intensity increases with the solvent
reorganization energy, the position of the maximum intensity
remains unchanged as shown in Figure 1(a). On the other
hand, the position of the maximum intensity is shifted to

higher frequency with the cutoff frequency as shown in
Figure 1(b). 

The trace of the bath degrees of freedom in Eq. (3) leads to
a non-Markovian dynamics in which the integrated bath
modes are transformed to memory in the system dynamics.23

Since the bath memory dissipates to zero after a finite time,
non-local interactions between the time points that are
separated more than the bath memory time, τm, can be
neglected in path integration without losing numerical
accuracy. In general, the cutoff frequency governs the
duration of the system-bath interaction and the reorgani-
zation energy affects the interaction strength according to
Eq. (15).

Let us consider the simplest system, Z1A, which com-
prises a single donor porphyrin unit and a single acceptor
unit. The two-state tight binding model is thus used
according to Eq. (1),

. (19)
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Figure 1. Ohmic spectral densities at (a) constant cutoff frequency
ωc = 400 cm−1 and (b) constant reorganization energy λ = 1576
cm−1.
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porphyrin arrays in toluene is unavailable, the bath cutoff
frequency of the porphyrin-quinone compound in aceto-
nitrile has been reported as 400 cm−1 using molecular
dynamics simulations.24 In addition, the solvent reorgani-
zation energy of the porphyrin-quinone in toluene has been
estimated to be 1900-2200 cm−1.25

Optimization of the spectral density for the EET process in
ZnA requires searching for the parameters by varying the
cutoff frequency as  cm−1 and the solvent
reorganization energy as  cm−1. At a given
cutoff frequency, the bath memory time is estimated upon
the convergence of the site population as elongating the path
segments in which the memory interactions among time
points are fully taken into account. Figure 2 presents the
acceptor population rise over time at  = 500 cm−1 and λ =
1790 cm−1. It is clear that the acceptor population converges
at τm = 22 fs. The bath response function in the inset
confirms that the choice of τm = 22 fs is appropriate. 

The propagation time step is also decided, which could
yield numerically converging results. By keeping τm as the
predetermined value of 22 fs, the convergence of acceptor
population is examined by comparing the results obtained by
Δt = 0.5, 1, 2 fs. In Figure 3, the acceptor populations for

 fs become indistinguishable. Therefore, when the
environment is described by the spectral density parameters

 = 500 cm−1 and λ = 1790 cm−1, the path integration
condition is set as Δt = 1 fs and τm = 22 fs. Following the
same procedure, the bath memory time is estimated to be 40
fs when the spectral cutoff frequency is 400 cm−1. Δt = 1 fs is
small enough to reproduce the converged population. For
the Z1A system, the spectral density parameters of (ωc, λ) as
(400 cm−1, 1576 cm−1) and (500 cm−1, 1790 cm−1) give rise
to the experimental energy transfer rate constant of
(2.5 ps)−1. 

For the Z2A system, there are two donor porphyrin units
and a single acceptor unit and the system Hamiltonian has a
3 × 3 matrix form,

. (20)

The initial condition is chosen such that the donor porphyrin
unit closest to the acceptor is excited while the other
porphyrin unit is in the ground state. While the energy can
only transfer from the single donor unit to the acceptor in
Z1A system, for larger systems, starting from Z2A, the
excitation energy hops between excited electronic states, and
is eventually trapped in the acceptor. As shown in Figure 4,
extremely rapid equilibration with the time constant of ~0.2
ps is achieved within the two donor states in Z2A due to the
strong interaction of VDD. Such behavior is expected to occur
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1000 λ 2500≤ ≤

ωc

Δt 1≤

ωc

H
s
 = 

0 VDD 0
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0 VDA EDA⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

Figure 2. Site population of the acceptor as a function of the bath
memory time included from 1 fs to 23 fs. The propagation time
step is chosen to be 1 fs. Environment is described by the ohmic
spectral density with the cutoff frequency ωc = 500 cm−1 and the
solvent reorganization energy λ = 1790 cm−1.

Figure 3. Site population of the acceptor as a function of the
propagation time step. Bath memory time is chosen to be τm = 22
fs. Environment is described by the ohmic spectral density with the
cutoff frequency ωc = 500 cm−1 and the solvent reorganization
energy λ = 1790 cm−1.

Figure 4. Site population of the three electronic states of Z2A
system. Environment is described by the ohmic spectral density
with the cutoff frequency ωc = 500 cm−1 and the solvent
reorganization energy λ = 1790 cm−1. Solid line corresponds to the
Z1 donor, dashed line to the Z2 donor, and the long-dashed line is
the acceptor.
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in a longer donor array as well. Therefore, for ZnA system
with , n porphyrin units can be modeled as one
coherently coupled donor state, acceptable when n is smaller
than the coherent length L, which interacts with the acceptor
such that the system Hamiltonian is reduced to a 2 × 2
matrix given as

 (21)

with the effective coupling constant between the effective
donor and the acceptor when n is less than L in the following
form6

, for , (22)

where n is the number of porphyrin units in the donor array
and VDA represents the coupling strength between donor and
acceptor in Z1A. Rk is the center-to-center distance between
the acceptor and the kth porphyrin unit in the donor array
while R1 is that of the nearest porphyrin unit from the
acceptor. On the other hand, as a finite number of porphyrin
moieties are coherently coupled up to a certain length L, the
effective coupling for the long arrays should be modified as
follows. 

, for n > L. (24)

By employing the optimal spectral densities chosen for the
Z1A system and the effective two-state system Hamiltonian
in Eq. (21), we have carried out the OFPF path integral
simulation on the effective two-state tight binding
Hamiltonian to estimate the energy transfer rates for the ZnA

system (n = 2, 4, 6, 12 and 24) as a function of the coherent
length L. By varying the coherent length from 1 to 6, in
Tables 1 and 2, the energy transfer rate constants are
compared with sets of the spectral density parameters (ωc, λ)
as (400 cm−1, 1576 cm−1) and (500 cm−1, 1790 cm−1),
respectively. We observed an excellent agreement between
the simulated and experimentally determined rate constants
especially when the spectral density parameters (ωc, λ) are
(400 cm−1, 1576 cm−1) and L is equal to 4. The coherent
length L = 4 obtained in our EET simulation also matches
well with the radiative coherent length of L = ~4 obtained in
the previous work from the plot of the natural radiative
lifetimes as a function of porphyrin units in Zn arrays.26 This
feature indicates that the excited state of the tightly bound
porphyrin arrays should be a coupled state covering a
number of porphyrins coherently. Overall, our path integral
method has proven to be a suitable tool to simulate the EET
processes occurring in energy donor-acceptor system
composed of porphyrin assemblies. 

Concluding Remarks

We have applied the real-time OFPF path integral
formalism to the simulation of the EET processes within
ZnA systems composed of 5,15-bisphenylethynylated
porphyrin unit as the energy acceptor and directly meso-

meso linked Zn(II) porphyrin array as the energy donor.
Regarding the porphyrin donor array as coherently coupled
one, the system is modeled with the two-state tight binding
donor-acceptor system coupled to a harmonic bath that is
described by an ohmic spectral density. Accurate real-time
quantum mechanical simulations of the time-evolution of
the site population of ZnA (n = 1, 2, 4, 6, 12 and 24) systems
have been performed and the experimentally observed EET
rate constants were reproduced excellently. Conclusively, all
donor-acceptor systems illustrate highly-efficient molecular
photonic wire due to large excitonic interactions arising
from a close proximity and a lack of energy sink owing to
well-defined orthogonal geometry along the arrays. 

In this work, the coherent length was determined based on
the simulated dynamics performed on the system-bath
Hamiltonian. Dynamical characteristics of the decoherence,
i.e., the dephasing time, is absent in the present study due to
the use of the effective model. The path integral methodo-
logy is general to be employed in various EET problems. In
particular, it is straightforward to extend the methodology to
multi-state systems in which each site represents an explicit
local exciton state. Off-diagonal elements of the reduced
density matrix provide details of the dephasing time and
direct measurement of the decoherence strength. Investi-
gation of EET using quantum mechanical simulations
should be crucial to understanding the energy transfer
mechanism in various molecular photonic systems and
devices where energy transfer process characterizes their
properties and functions. Aforementioned multi-state energy
transfer simulations are under progress and will be presented
in future publications.
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Table 1. Energy transfer rate constants at ωc = 400 cm−1, λ = 1576
cm−1. Units are in (ps)−1. Lx indicates that the rate constants are
evaluated assuming the coherent length L = x

Exp. L1 L2 L3 L4 L5 L6

Z1A 2.5 ± 0.1 2.4 2.4 2.4 2.4 2.4 2.4

Z2A 3.3 ± 0.2 4.5 3.2 3.2 3.2 3.2 3.2

Z3A 5.5 ± 0.5 6.9 6.2 5.0 5.0 5.0 5.0

Z6A 21 ± 2 14 17 20 22 22 17

Z12A 63 ± 5 28 35 49 69 98 120

Z24A 108 ± 7 59 80 120 130 210 280

Table 2. Energy transfer rate constants at ωc = 500 cm−1, λ = 1790
cm−1. Units are in (ps)−1. Lx indicates that the rate constants are
evaluated assuming the coherent length L = x

Exp. L1 L2 L3 L4 L5 L6

Z1A 2.5 ± 0.1 2.6 2.6 2.6 2.6 2.6 2.6

Z2A 3.3 ± 0.2 5.0 3.5 3.5 3.5 3.5 3.5

Z3A 5.5 ± 0.5 7.6 6.8 5.5 5.5 5.5 5.5

Z6A 21 ± 2 15 18 22 24 24 18

Z12A 63 ± 5 31 38 54 78 110 140

Z24A 108 ± 7 64 89 140 160 220 300
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