• Title/Summary/Keyword: Linkage Kinematics

Search Result 28, Processing Time 0.023 seconds

Interference-free French door design using four-bar linkage mechanism (4절 링크를 이용한 프렌치 도어의 간섭 방지 설계)

  • Lee, Jin-Gyu;Yun, Jae-Deuk;Jung, Yoong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2031-2037
    • /
    • 2011
  • The French doors have the advantage that they can use inner space more efficiently due to without of partition between two rooms. However, when they are used for refrigerators, the door gaskets for sealing may cause interference of themselves during opening and closing, which causes fatal effect on sealing by worn out of the gaskets as well as increases door opening force. This research proposes a new mechanism for the French doors using the parallelogram motion of 4-bar linkage mechanism, which does not make any interference between gaskets. We manufactured the French doors of proposed mechanism to verify that they do not cause any interference during opening and closing, as well as opening force is decreased. The use of our developed mechanism is not limited to refrigerators, but can be extended to other industrial products with the French doors.

Kinematic Analysis of a Legged Walking Robot Based on Four-bar Linkage and Jansen Mechanism (4절 링크 이론과 얀센 메커니즘을 기반으로 한 보행 로봇의 운동학 해석)

  • Kim, Sun-Wook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.159-164
    • /
    • 2011
  • In this study, a crab robot is implemented in H/W based on four-bar linkage mechanism and Jansen mechanism, and its kinematics is analysed. A vision camera is attached to the mechanism, which makes the proposed robot a kind of biologically inspired robot for image acquisition. Three ultrasonic sensors are adopted for obstacle avoidance. In addition, the biologically inspired robot can achieve the mission appointed by a programmer outside, based on RF and Blue-tooth communication module. For the design and implementation of a crab robot, it is need to get joint variable, a foot point, and their relation. Thus, the proposed kinematic analysis is very important process for the design and implementation of legged robots.

DESIGN PROGRAM FOR THE KINEMATIC AND DYNAMIC CHARACTERISTICS OF THE BUS DOOR MECHANISM

  • KWON S.-J.;SUH M.-W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.403-411
    • /
    • 2005
  • The bus is regarded as one of the most frequently used public transportation systems, the research and development on driving stability, safety, and convenience for drivers and passengers has tremendously increased in recent days. This paper investigated the design of the bus door mechanism composed of an actuator (or motor) and linkages. The bus door mechanism is divided into many types according to the coupling of the linkages and the driving system. The mathematical models of all types of door mechanism have been constructed for computer simulation. To design the bus door mechanism, we developed a simulation program, which automates the kinematic and dynamic analysis according to the input parameters of each linkage and the driving system. Using this program, we investigated the design parameters that affect the kinematic and dynamic characteristics of the bus door mechanism under various simulation conditions. In addition, simple examples are examined to validate the developed program.

Development of on-line inverse kinematic algorithm and its experimental implementation (온라인 좌표 역변환 알고리듬의 개발과 이의 실험적 수행)

  • 오준호;박서욱;이두현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.16-20
    • /
    • 1988
  • This paper presents a new algorithm for solving the inverse kinematics in real-time applications. The end-tip movement of each link can be resolved into the basic resolution unit, .DELTA.l, which depends on link length, reduction ratio and resolution of the incremental encoder attached to the joint. When x- and y-axis projection of the end-tip movement are expressed in .DELTA.l unit, projectional increments .DELTA.x and .DELTA.y become -1, 0 or I by truncation. By using the incremental computation with these ternary value and some simple logic rules, a coordinate transformation can be realized. Through this approach, it should be noted that the floating-point arithmetic and the manipulation of trigonometric functions are completely eliminated. This paper demonstrates the proposed method in a parallelogram linkage type, two-link arm.

  • PDF

Development of Rotational Nanoactuator Based on Four-Bar Linkage (4절링크 기구기반의 회전형 초정밀위치결정기구의 개발)

  • Jeong, Young Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.361-367
    • /
    • 2014
  • Ultra-precision positioning plays a crucial role in emerging technologies such as electronics, bioengineering, optics, and various nanofabrication technologies. As a result, various nanopositioning methods have been presented. In particular, nanopositioning using a flexure mechanism and piezo-electric actuator is one of the most valuable methods because of its friction-free motion and subnanometer-scale motion resolution. In this study, a rotational nanoactuator based on a right-circular flexure mechanism and piezo-electric actuator was developed through a consideration of the kinematics and structural deformation. An experimental setup was constructed to verify the performance expectation. Consequently, it was demonstrated that the developed system had a maximum rotational angle of about 0.01 rad, as well as sufficient linearity with respect to the input voltage.

Dynamic Analysis of a Bogie Tilting Mechanism (대차 틸팅 기구의 동적 해석)

  • 구동회;김남포;한형석
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.300-307
    • /
    • 2003
  • Using a conventional railway, a tilting train was applied as a means of improving vehicle speed curve negotiation without any modification of infrastructure. In order to achieve the optimal car-body position control through the tilting mechanism, a dynamics analysis was required after the kinematics analysis of the tilting mechanism. For this, the geometric relationship of the linkage-type tilting mechanism was defined. Then, the equations of motion for the half car-body were derived. With the derived equations, the effect of the parameter change on performance was analyzed. The analysis result can be used in the optimum design of a tilting mechanism that considers the track environment, vehicle and operational conditions in which the tilting vehicle is applied.

Dynamic Models of Blade Pitch Control System Driven by Electro-Mechanical Actuator (전기-기계식 구동기를 이용한 블레이드 피치 조종 시스템의 동역학 모델)

  • Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.111-118
    • /
    • 2022
  • An electro-mechanical actuator (EMA) is an actuator that combines an electric motor with a mechanical power transmission elements, and it is suitable for urban air mobility (UAM) in terms of design freedom and maintenance. In this paper, the author presents the research results of the EMA that controls the rotor blade pitch angle of UAM. The actuator is based on an inverted roller screw and controls the blade pitch angle through a two-bar linkage. The dynamic equations for the actuator alone and the blade pitching motion with actuator were derived. For the latter, the equivalent moment of inertia is variable depending on the link angle due to the two-bar linkage. The variations of the equivalent moments of inertia are analyzed and compared in terms of the nut motion and the blade pitch motion. For an example model, the variation of the equivalent moment of inertia of the former is smaller than the latter, so it is judged that the dynamic equations derived from the point of view of the nut motion is suitable for the controller design.

Dynamic Modeling of a Novel ATC Mechanism based on 4-bar Linkage (4절링크를 기반으로 하는 신개념 ATC 메커니즘의 동역학 해석)

  • Lee, Sangho;Kim, Jong-Won;Seo, TaeWon;Kim, Jongwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2016
  • Recently, demands on the tapping machine are increased due to the case of a cell phone is changed to metal such as aluminum. The automatic tool changer (ATC) is one of the most important devices for the tapping machine related to the speed and energy consumption of the machine. To reduce the consumed energy and vibration, the dynamic modeling is essential for the ATC. In this paper, inverse dynamic modeling of a novel ATC mechanism is introduced. The proposed ATC mechanism is composed of a double four-bar mechanism with a circular tablet to generate continuous rotation of the tablet. The dynamic modeling is performed based on the Lagrange equation with a modeling for the contact between the four-bar and the tablet. Simulation results for various working conditions are proposed and analyzed for the prototype design. The dynamic modeling can be applied to determine the proper actuator and to reduce the vibration and consumed energy for the ATC machine.