• Title/Summary/Keyword: Link force

Search Result 278, Processing Time 0.027 seconds

ON FORCES ACTING ON TRACTOR THREE-POINT LINKAGE AND ROTARY TILLING SYSTEM

  • Ikemi, Takao;Sakai, Jun;Li, Ji
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.316-325
    • /
    • 1993
  • The forces acting on tractor three-point linkage were analyzed including the rear cover action of a rotary tiller which is ignored usually. The relation of link force and tillage resistance is expressed as a linear form. The link forces vary with tilling torque from negative force to positive in the free-link, though in the fixed-link they increase without change of force sign. The effects of the rear cover resistance appeared in the link forces in the fixed-link.

  • PDF

Static and Structural Analyses of the Link of a Double-Action Link-Type Hydraulic Die Set (폐쇄단조용 복동링크유압식 다이세트의 링크의 정역학적 해석과 구조해석)

  • Eom J.G.;Jun B.Y.;Joun M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.93-94
    • /
    • 2006
  • This paper presents the mechanics of the link of a double-action link-type hydraulic die set for the enclosed die forging. The force exerted on the link is statically investigated and its structural analysis is carried out.

  • PDF

Static and Structural Analyses of the Link of a Double-Action Link-Type Hydraulic Die Set (폐쇄단조용 복동링크유압식 다이세트의 링크의 정역학적 해석과 구조해석)

  • Eom, Jae-Gun;Jun, Byoung-Yoon;Joun, Man-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.96-102
    • /
    • 2006
  • This paper presents the mechanics of the link of a double-action link-type hydraulic die set for the enclosed die forging. Operational principle of the die set in the enclosed die forging is introduced with emphasis on force transmission from the press and the hydraulic system to the material through links, die components and punches. The force exerted on the link is statically investigated and its structural analysis is carried out. The analyzed results are discussed to be used for design of the link system.

Development of Calf Link Force Sensors of Walking Assist Robot for Leg Patients (다리 환자를 위한 보행보조로봇의 종아리 링크 3축 힘센서 개발)

  • Kim, Han-Sol;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.114-121
    • /
    • 2017
  • This paper describes the design and fabrication of a three-axis force sensor with parallel plate beams (PPSs) for measuring the calf force while a patient with a walking assist robot is walking. Current walking assist robots can't measure the weight of the patient's leg and the robot's leg which required for robot control. So, the three-axis force sensor in the calf link is designed and manufactured, it is composed of a Fx force sensor, a Fy force sensor and a Fz force sensor. The three-axis force sensor was designed using by FEM(Finite Element Method), and fabricated using strain-gages. The characteristics experiment of the three-axis force sensor was carried out respectively. The test results indicated that the repeatability error and the non-linearity error of three-axis force sensor was less than 0.04% respectively. Therefore, the fabricated three-axis force sensor in the calf link can be used to measure the patient's calf force in the walking assist robot.

다이케스팅 머신의 구조 해석

  • 윤승원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.813-817
    • /
    • 1995
  • Structural analysis of horizontal cold chamber die casting machine is performed by the FEM. The analyzed model is made up of stationary die platen,movable die platen,link housing platen, C-frame, and tie bar which mainly undertake die locking force and injection force. In modeling, compression gap elements are used for to simulate contacting condition between tie bar and movable die platen, movable die platen and base frame, and link housing and base frame. Unbalanced die locking force imposed on four tie bars are considered. As the results, the deformed shape and the stresses of the die casting machine are given.

  • PDF

Criterion on Enclosed Die Forging with a Double-Action Link-Type Hydraulic Die Set (복동링크유압식 다이세트를 이용한 폐쇄단조의 폐쇄단조조건)

  • Jun, B.Y.;Park, R.H.;Eom, J.G.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.391-394
    • /
    • 2006
  • In this paper, a criterion on enclosed die forging with a double action link type hydraulic die set is presented. Operational principle of the die set in enclosed die forging is introduced with emphasis on force transfer from the press and the hydraulic system to the material through links, die components and punches. Force transfer mechanism is examined and three different modes are introduced. Requirements on force equilibrium are applied to the three force transfer modes and a criterion on enclosed die forging with a double action link type hydraulic die set is drawn. The criterion is discussed to minimize forming load.

  • PDF

Dynamic Characteristics of Link Mechanism with Clearance (간극이 있는 링크기구의 동특성)

  • 최연선;배성준
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1050-1057
    • /
    • 1999
  • The existence of clearance at the link joint of a machine is inevitable for assembly and mobility. During the cyclic operation of a machine, rapid changes of the direction and magnitude of connection forces cause momentary loss of contact between the pin and the bushing at the link joint. Contact loss at the clearance joint gives rise to undesirable impact. The impulsive force affects on the performance of the machine, and leads to excessive vibration, noise and faster wear in the connecitons. In this paper, experiment and theoretical analysis were carried out for the variation of crank speed and clearance size. The link mechanism employed in this investigation was newly designed to check the effects of parameter changes on the occurrence of contact loss and on the magnitude of the impact force. The contact loss and impact position were calculated with various driving conditions.

  • PDF

Analysis of Mechanical Stress Due to Magnetic Force and Thermal Expansion in Brsushless Motor (브러시레스 전동기에서 전자기적 가진력 및 열에 의한 기계적 음력해석)

  • Ha, Gyeong-Ho;Hong, Jeong-Pyo;Lee, Geun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.5
    • /
    • pp.221-227
    • /
    • 2002
  • This paper deals with the mechanical stress analysis due to electromagnetic forces and the optimal design of the link considering the stress. The link in Interior Permanent Magnet Brushless Motor(IPM) have influence on both mechanical and magnetic performance. The decrease of the link thickness serves to improve the torque, whereas this decreases the strength of link. Therefore, it is necessary to determine the appropriate link thickness considering electromagnetic forces and thermal expansion. The effects of the variation of link thickness on the mechanical stress and the electromagnetic performance are analyzed by the structural and electromagnetic Finite Element Method. In addition, the mechanical structure design of the link is performed to reinforce the mechanical strength against magnetic forces while preserving a food magnetic torque.

In-plane and out-of-plane bending moments and local stresses in mooring chain links using machine learning technique

  • Lee, Jae-bin;Tayyar, Gokhan Tansel;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.848-857
    • /
    • 2021
  • This paper proposes an efficient approach based on a machine learning technique to predict the local stresses on mooring chain links. Three-link and multi-link finite element analyses were conducted for a target chain link of D107 with steel grade R4; 24,000 and 8000 analyses were performed, respectively. Two serial Artificial Neural Network (ANN) models based on a deep multi-layer perceptron technique were developed. The first ANN model corresponds to multi-link analyses, where the input neurons were the tension force and angle and the output neurons were the interlink angles. The second ANN model corresponds to the three-link analyses with the input neurons of the tension force, interlink angle, and the local stress positions, and the output neurons of the local stress. The predicted local stresses for the untrained cases were reliable compared to the numerical simulation results.

Kinematic Analysis and Dynamic Balancing Technique in a Link-Motion Mechanism (링크모션 메커니즘의 기구학적 분석 및 다이나믹 발란싱 테크닉)

  • Suh, Jin-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.498-502
    • /
    • 2004
  • In a link-motion mechanism, numerous links are interconnected and each link executes a constrained motion at a high speed. Due to the complicated constrained motions of the constituent links, dynamic unbalance forces and moments are generated and transmitted to the main frame. Therefore unwanted vibration is produced. This degrades productivity and precise work. Based on constrained multi-body dynamics, the kinematic analysis is carried out to enable design changes to be made. This will provide the fundamental information for significantly reducing dynamic unbalance forces and moments which are transmitted to the main frame. In this work, a link-motion punch press is selected as an example of a link-motion mechanism. To calculate the mass and inertia properties of every link comprising a link-motion punch press, 3-dimensional CAD software is utilized. The main issue in this work is to eliminate the first-order unbalance force and moment in a link-motion punch press. The mass, moment of inertia link length, location of the mass center in each link have a great impact on the degree of dynamic balancing which can be achieved maximally. Achieving good dynamic balancing in a link motion punch press is quite essential fur reliable operation at high speed.

  • PDF