• Title/Summary/Keyword: Linguistic Weights

Search Result 19, Processing Time 0.021 seconds

A Recognition Method for Main Characters Name in Korean Novels (한국어 소설에서 주요 인물명 인식 기법)

  • Kim, Seo-Hee;Park, Tae-Keun;Kim, Seung-Hoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.1
    • /
    • pp.75-81
    • /
    • 2016
  • The main characters play leading roles in novels. In the previous studies, they recognize the main characters in a novel mainly based on dictionaries that built beforehand. In English, names begin with upper cases and are used with some words. In this paper, we propose a recognition method for main characters name in Korean novels by using predicates, rules and weights. We first recognize candidates for the characters name by predicates and propose some rules to exclude candidates that cannot be characters. We assign importances for candidates, considering weights that given by the number of candidates appeared in a sentence. Finally, if the importance of the character is more than a threshold, we decide that the character is one of main characters. The results from the experiments for 300 novels show that an average accuracy is 85.97%. The main characters name may be used to grasp relationships among characters, character's action and tendency.

Risk Analysis for the Rotorcraft Landing System Using Comparative Models Based on Fuzzy (퍼지 기반 다양한 모델을 이용한 회전익 항공기 착륙장치의 위험 우선순위 평가)

  • Na, Seong Hyeon;Lee, Gwang Eun;Koo, Jeong Mo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.49-57
    • /
    • 2021
  • In the case of military supplies, any potential failure and causes of failures must be considered. This study is aimed at examining the failure modes of a rotorcraft landing system to identify the priority items. Failure mode and effects analysis (FMEA) is applied to the rotorcraft landing system. In general, the FMEA is used to evaluate the reliability in engineering fields. Three elements, specifically, the severity, occurrence, and detectability are used to evaluate the failure modes. The risk priority number (RPN) can be obtained by multiplying the scores or the risk levels pertaining to severity, occurrence, and detectability. In this study, different weights of the three elements are considered for the RPN assessment to implement the FMEA. Furthermore, the FMEA is implemented using a fuzzy rule base, similarity aggregation model (SAM), and grey theory model (GTM) to perform a comparative analysis. The same input data are used for all models to enable a fair comparison. The FMEA is applied to military supplies by considering methodological issues. In general, the fuzzy theory is based on a hypothesis regarding the likelihood of the conversion of the crisp value to the fuzzy input. Fuzzy FMEA is the basic method to obtain the fuzzy RPN. The three elements of the FMEA are used as five linguistic terms. The membership functions as triangular fuzzy sets are the simplest models defined by the three elements. In addition, a fuzzy set is described using a membership function mapping the elements to the intervals 0 and 1. The fuzzy rule base is designed to identify the failure modes according to the expert knowledge. The IF-THEN criterion of the fuzzy rule base is formulated to convert a fuzzy input into a fuzzy output. The total number of rules is 125 in the fuzzy rule base. The SAM expresses the judgment corresponding to the individual experiences of the experts performing FMEA as weights. Implementing the SAM is of significance when operating fuzzy sets regarding the expert opinion and can confirm the concurrence of expert opinion. The GTM can perform defuzzification to obtain a crisp value from a fuzzy membership function and determine the priorities by considering the degree of relation and the form of a matrix and weights for the severity, occurrence, and detectability. The proposed models prioritize the failure modes of the rotorcraft landing system. The conventional FMEA and fuzzy rule base can set the same priorities. SAM and GTM can set different priorities with objectivity through weight setting.

The Design of Polynomial Network Pattern Classifier based on Fuzzy Inference Mechanism and Its Optimization (퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기의 설계와 이의 최적화)

  • Kim, Gil-Sung;Park, Byoung-Jun;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.970-976
    • /
    • 2007
  • In this study, Polynomial Network Pattern Classifier(PNC) based on Fuzzy Inference Mechanism is designed and its parameters such as learning rate, momentum coefficient and fuzzification coefficient are optimized by means of Particle Swarm Optimization. The proposed PNC employes a partition function created by Fuzzy C-means(FCM) clustering as an activation function in hidden layer and polynomials weights between hidden layer and output layer. Using polynomials weights can help to improve the characteristic of the linear classification of basic neural networks classifier. In the viewpoint of linguistic analysis, the proposed classifier is expressed as a collection of "If-then" fuzzy rules. Namely, architecture of networks is constructed by three functional modules that are condition part, conclusion part and inference part. The condition part relates to the partition function of input space using FCM clustering. In the conclusion part, a polynomial function caries out the presentation of a partitioned local space. Lastly, the output of networks is gotten by fuzzy inference in the inference part. The proposed PNC generates a nonlinear discernment function in the output space and has the better performance of pattern classification as a classifier, because of the characteristic of polynomial based fuzzy inference of PNC.

Privacy-Preserving Language Model Fine-Tuning Using Offsite Tuning (프라이버시 보호를 위한 오프사이트 튜닝 기반 언어모델 미세 조정 방법론)

  • Jinmyung Jeong;Namgyu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.165-184
    • /
    • 2023
  • Recently, Deep learning analysis of unstructured text data using language models, such as Google's BERT and OpenAI's GPT has shown remarkable results in various applications. Most language models are used to learn generalized linguistic information from pre-training data and then update their weights for downstream tasks through a fine-tuning process. However, some concerns have been raised that privacy may be violated in the process of using these language models, i.e., data privacy may be violated when data owner provides large amounts of data to the model owner to perform fine-tuning of the language model. Conversely, when the model owner discloses the entire model to the data owner, the structure and weights of the model are disclosed, which may violate the privacy of the model. The concept of offsite tuning has been recently proposed to perform fine-tuning of language models while protecting privacy in such situations. But the study has a limitation that it does not provide a concrete way to apply the proposed methodology to text classification models. In this study, we propose a concrete method to apply offsite tuning with an additional classifier to protect the privacy of the model and data when performing multi-classification fine-tuning on Korean documents. To evaluate the performance of the proposed methodology, we conducted experiments on about 200,000 Korean documents from five major fields, ICT, electrical, electronic, mechanical, and medical, provided by AIHub, and found that the proposed plug-in model outperforms the zero-shot model and the offsite model in terms of classification accuracy.

A Study on the English Translations of Shanghanlun (Treatise on Cold Damage) and the Cold Pathogen Chapter of Donguibogam (『상한론(傷寒論)』 영역본과 『동의보감(東醫寶鑑)』 영역본 잡병편 '한(寒)'문의 비교 연구)

  • Kim, Do-Hoon;Kim, Dong-Ryul;Jung, Ji-Hun
    • The Journal of Korean Medical History
    • /
    • v.30 no.1
    • /
    • pp.33-41
    • /
    • 2017
  • This study utilized Corpus-based Analysis process to compare the Cold Pathogen chapter in the 'English version of "Donguibogam"' to the 'English version of the "Shanghanlun"' translated by 罗希文 (Luo xi wen). Results of the linguistic analysis indicate that TTR, a ratio of number of types to number of tokens in the English version of "Shanghanlun" was 5.92% while TTR in the Cold pathogen chapter of English version of "Donguibogam" was 6.01%. It was also noted that the types of words frequently appearing in the two publications were the scientific name of medicinal herbs; the method of producing the herbal prescription (including terminology representing weights and measures); and Chinese descriptions of concepts considered important in both Korean and Chinese medicinal practices. Finally, it was possible to find points of comparison in naming of symptoms, diagnosis, prescriptions, and respective names of six meridians. Though the language difference is minimal, the vocabulary found in the Cold Pathogen chapter of "Donguibogam" was more diverse than Luo's translation of "Sanghanlun". In general, literal translation in keeping with the sense of original text was better performed in Luo's translation of the "Sanghanlun" whereas the English version of the Cold Pathogen chapter in the "Donguibogam" was more of a "free" translation.

Rank Decision of Ecological Environment Assessment Field Introducing Fuzzy Integral (퍼지적분을 도입한 생태환경평가부문의 순위결정)

  • You, Ju-Han;Jung, Sung-Gwan;Choi, Won-Young;Lee, Woo-Sung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.5 s.118
    • /
    • pp.39-51
    • /
    • 2006
  • This study was carried out to provide guidance to environmental policy makers when deciding which assessment fields (biotic, abiotic, qualitative, functional) should have priority for ecological preservation and to develop an objective and scientific methodology by introducing the engineering concept of the fuzzy integral. The grant of weights was used the eigenvalues calculated by factor analysis, and the converted values of indicators were obtained in multiplying the arithmetic values and eigenvalues. The results of the appropriateness and reliability of assessment fields were examined over 0.6, and the results showed that the design of questionnaire presented no great problems. When the fuzzy integral was calculated to determine the rankings at ${\lambda}$=1, 2, 3, 4, 5, respectively, they were 0.646, 0.630, 0.943, 1.423, and 1.167 for the biotic field, 1.298, 1.400, 0.901, 0.580, and 1.456 for the abiotic field, 0.714, 0.674, 0.346, 0.674, and 1.610 in the qualitative field and 1.000, 0.973, 0.943, 1.024, and 1.008 in the functional field. The sensitivity to ${\lambda}$ value showed that ${\lambda}=4$ was the most suitable. In comparison with ${\lambda}=0$ (the arithmetic mean), the range of change was narrow. Because the range for ${\lambda}=4$ was narrower than my other values, ${\lambda}=4$ was sure to be available in ranking-decision. The fuzzy integral is expected to be a method for analyzing and filtering human thoughts. In the future, in order to overcome linguistic uncertainty and subjectivity, other fuzzy integral models including Sugeno's method, AHP, and so forth should be used.

The Application of Fuzzy Logic to Assess the Performance of Participants and Components of Building Information Modeling

  • Wang, Bohan;Yang, Jin;Tan, Adrian;Tan, Fabian Hadipriono;Parke, Michael
    • Journal of Construction Engineering and Project Management
    • /
    • v.8 no.4
    • /
    • pp.1-24
    • /
    • 2018
  • In the last decade, the use of Building Information Modeling (BIM) as a new technology has been applied with traditional Computer-aided design implementations in an increasing number of architecture, engineering, and construction projects and applications. Its employment alongside construction management, can be a valuable tool in helping move these activities and projects forward in a more efficient and time-effective manner. The traditional stakeholders, i.e., Owner, A/E and the Contractor are involved in this BIM system that is used in almost every activity of construction projects, such as design, cost estimate and scheduling. This article extracts major features of the application of BIM from perspective of participating BIM components, along with the different phrases, and applies to them a logistic analysis using a fuzzy performance tree, quantifying these phrases to judge the effectiveness of the BIM techniques employed. That is to say, these fuzzy performance trees with fuzzy logic concepts can properly translate the linguistic rating into numeric expressions, and are thus employed in evaluating the influence of BIM applications as a mathematical process. The rotational fuzzy models are used to represent the membership functions of the performance values and their corresponding weights. Illustrations of the use of this fuzzy BIM performance tree are presented in the study for the uninitiated users. The results of these processes are an evaluation of BIM project performance as highly positive. The quantification of the performance ratings for the individual factors is a significant contributor to this assessment, capable of parsing vernacular language into numerical data for a more accurate and precise use in performance analysis. It is hoped that fuzzy performance trees and fuzzy set analysis can be used as a tool for the quality and risk analysis for other construction techniques in the future. Baldwin's rotational models are used to represent the membership functions of the fuzzy sets. Three scenarios are presented using fuzzy MEAN, AND and OR gates from the lowest to intermediate levels of the tree, and fuzzy SUM gate to relate the intermediate level to the top component of the tree, i.e., BIM application final performance. The use of fuzzy MEAN for lower levels and fuzzy SUM gates to reach the top level suggests the most realistic and accurate results. The methodology (fuzzy performance tree) described in this paper is appropriate to implement in today's construction industry when limited objective data is presented and it is heavily relied on experts' subjective judgment.

A Study on the Development of Driving Risk Assessment Model for Autonomous Vehicles Using Fuzzy-AHP (퍼지 AHP를 이용한 자율주행차량의 운행 위험도 평가 모델 개발 연구)

  • Siwon Kim;Jaekyung Kwon;Jaeseong Hwang;Sangsoo Lee;Choul ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.192-207
    • /
    • 2023
  • Commercialization of level-4 (Lv.4) autonomous driving applications requires the definition of a safe road environment under which autonomous vehicles can operate safely. Thus, a risk assessment model is required to determine whether the operation of autonomous vehicles can provide safety to is sufficiently prepared for future real-life traffic problems. Although the risk factors of autonomous vehicles were selected and graded, the decision-making method was applied as qualitative data using a survey of experts in the field of autonomous driving due to the cause of the accident and difficulty in obtaining autonomous driving data. The fuzzy linguistic representation of decision-makers and the fuzzy analytic hierarchy process (AHP), which converts uncertainty into quantitative figures, were implemented to compensate for the AHP shortcomings of the multi-standard decision-making technique. Through the process of deriving the weights of the upper and lower attributes, the road alignment, which is a physical infrastructure, was analyzed as the most important risk factor in the operation risk of autonomous vehicles. In addition, the operation risk of autonomous vehicles was derived through the example of the risk of operating autonomous vehicles for the 5 areas to be evaluated.

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF