In order to considerably reduce the ambiguity rate, we propose in this article a disambiguation approach that is based on the selection of the right diacritics at different analysis levels. This hybrid approach combines a linguistic approach with a multi-criteria decision one and could be considered as an alternative choice to solve the morpho-lexical ambiguity problem regardless of the diacritics rate of the processed text. As to its evaluation, we tried the disambiguation on the online Alkhalil morphological analyzer (the proposed approach can be used on any morphological analyzer of the Arabic language) and obtained encouraging results with an F-measure of more than 80%.
This research aims at transforming the definition tort of an English-English-Korean Dictionary (EEKD) which is encoded in EST files for the purpose of publishing into a structured format for Lexical Data Base (LDB). The construction of LDB is very time-consuming and expensive work. In order to save time and efforts in building new lexical information, the present study tries to extract useful linguistic information from an existing printed dictionary. In this paper, the process of extraction and structuring of lexical information from a printed dictionary (EEKD) as a lexical resource is described. The extracted information is represented in XML format, which can be transformed into another representation for different application requirements.
Kim, Gyeong-Min;Park, Chanjun;Jo, Jaechoon;Lim, Heui-Seok
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.149-152
/
2019
감성분석이란 입력된 텍스트의 감성을 분류하는 자연어처리의 한 분야로, 최근 CNN, RNN, Transformer등의 딥러닝 기법을 적용한 다양한 연구가 있다. 한국어 감성분석을 진행하기 위해서는 형태소, 음절 등의 추가 자질을 활용하는 것이 효과적이며 성능 향상을 기대할 수 있는 방법이다. 모델 생성에 있어서 아키텍쳐 구성도 중요하지만 문맥에 따른 언어를 컴퓨터가 표현할 수 있는 지식 표현 체계 구성도 상당히 중요하다. 이러한 맥락에서 BERT모델은 문맥을 완전한 양방향으로 이해할 수있는 Language Representation 기반 모델이다. 본 논문에서는 최근 CNN, RNN이 융합된 모델과 Transformer 기반의 한국어 KoBERT 모델에 대해 감성분석 task에서 다양한 성능비교를 진행했다. 성능분석 결과 어절단위 한국어 KoBERT모델에서 90.50%의 성능을 보여주었다.
A protein's subcellular localization is considered an essential part of the description of its associated biomolecular phenomena. As the volume of biomolecular reports has increased, there has been a great deal of research on text mining to detect protein subcellular localization information in documents. It has been argued that linguistic information, especially syntactic information, is useful for identifying the subcellular localizations of proteins of interest. However, previous systems for detecting protein subcellular localization information used only shallow syntactic parsers, and showed poor performance. Thus, there remains a need to use a full syntactic parser and to apply deep linguistic knowledge to the analysis of text for protein subcellular localization information. In addition, we have attempted to use semantic information from the WordNet thesaurus. To improve performance in detecting protein subcellular localization information, this paper proposes a three-step method based on a full syntactic dependency parser and WordNet thesaurus. In the first step, we constructed syntactic dependency paths from each protein to its location candidate, and then converted the syntactic dependency paths into dependency trees. In the second step, we retrieved root information of the syntactic dependency trees. In the final step, we extracted syn-semantic patterns of protein subtrees and location subtrees. From the root and subtree nodes, we extracted syntactic category and syntactic direction as syntactic information, and synset offset of the WordNet thesaurus as semantic information. According to the root information and syn-semantic patterns of subtrees from the training data, we extracted (protein, localization) pairs from the test sentences. Even with no biomolecular knowledge, our method showed reasonable performance in experimental results using Medline abstract data. Our proposed method gave an F-measure of 74.53% for training data and 58.90% for test data, significantly outperforming previous methods, by 12-25%.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.6
/
pp.662-672
/
2017
Child sexual crimes have increased, but there has been no effective plan to combat this. Films reporting problems, amplify the attentions and propose countermeasures, which leads to changes. The current study examined the audiences' reactions to child sexual crime faction films using text-mining. The analysis of Naver's 2,727 blogs showed realistic words while 3,000 review comments' analysis demonstrated emotional responses. The positive and negative emotional category and degree were also different. In , the higher degree of negative emotions, such as 'angry' and 'unpleasant' appeared frequently. In , only negative emotional worlds were used. On the other hand, 'sad' was the highest ranked word, and the negative level was weak. In , 'good' a positive emotional word solely emerged. The audiences perceived the accidents objectively before release while they expressed their emotions and feelings after watching the movies. caused explosive anger and organized the participating citizens for changes. This movie provided an opportunity to enforce a legislative bill intensifying heavy punishments. The present study is significant in scrutinizing the audiences' diverse emotional reactions and discusses the future direction of society prosecution movies. Based on the text analysis of the audiences' linguistic expressions, a future study will be needed to hierarchically classify the diverse emotional expressions.
The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.
Kim, Hakdong;Go, Myunghyun;Lim, Heonyeong;Lee, Yurim;Jee, Minkyu;Kim, Wonil
Journal of Broadcast Engineering
/
v.24
no.1
/
pp.48-57
/
2019
The purpose of this study is to understand the intention of the inquirer from the single text type question in Goal-oriented dialogue. Goal-Oriented Dialogue system means a dialogue system that satisfies the user's specific needs via text or voice. The intention analysis process is a step of analysing the user's intention of inquiry prior to the answer generation, and has a great influence on the performance of the entire Goal-Oriented Dialogue system. The proposed model was used for a daily chemical products domain and Korean text data related to the domain was used. The analysis is divided into a speech-act which means independent on a specific field concept-sequence and which means depend on a specific field. We propose a classification method using the word embedding model and the CNN as a method for analyzing speech-act and concept-sequence. The semantic information of the word is abstracted through the word embedding model, and concept-sequence and speech-act classification are performed through the CNN based on the semantic information of the abstract word.
Individuals gather information online to resolve problems in their daily lives and make various decisions about the purchase of products or services. With the revolutionary development of information technology, Web 2.0 has allowed more people to easily generate and use online reviews such that the volume of information is rapidly increasing, and the usefulness and significance of analyzing the unstructured data have also increased. This paper presents an analysis on the lexical features of expert product reviews to determine their influence on consumers' purchasing decisions. The focus was on how unstructured data can be organized and used in diverse contexts through text mining. In addition, diverse lexical features of expert reviews of contents provided by a third-party review site were extracted and defined. Expert reviews are defined as evaluations by people who have expert knowledge about specific products or services in newspapers or magazines; this type of review is also called a critic review. Consumers who purchased products before the widespread use of the Internet were able to access expert reviews through newspapers or magazines; thus, they were not able to access many of them. Recently, however, major media also now provide online services so that people can more easily and affordably access expert reviews compared to the past. The reason why diverse reviews from experts in several fields are important is that there is an information asymmetry where some information is not shared among consumers and sellers. The information asymmetry can be resolved with information provided by third parties with expertise to consumers. Then, consumers can read expert reviews and make purchasing decisions by considering the abundant information on products or services. Therefore, expert reviews play an important role in consumers' purchasing decisions and the performance of companies across diverse industries. If the influence of qualitative data such as reviews or assessment after the purchase of products can be separately identified from the quantitative data resources, such as the actual quality of products or price, it is possible to identify which aspects of product reviews hamper or promote product sales. Previous studies have focused on the characteristics of the experts themselves, such as the expertise and credibility of sources regarding expert reviews; however, these studies did not suggest the influence of the linguistic features of experts' product reviews on consumers' overall evaluation. However, this study focused on experts' recommendations and evaluations to reveal the lexical features of expert reviews and whether such features influence consumers' overall evaluations and purchasing decisions. Real expert product reviews were analyzed based on the suggested methodology, and five lexical features of expert reviews were ultimately determined. Specifically, the "review depth" (i.e., degree of detail of the expert's product analysis), and "lack of assurance" (i.e., degree of confidence that the expert has in the evaluation) have statistically significant effects on consumers' product evaluations. In contrast, the "positive polarity" (i.e., the degree of positivity of an expert's evaluations) has an insignificant effect, while the "negative polarity" (i.e., the degree of negativity of an expert's evaluations) has a significant negative effect on consumers' product evaluations. Finally, the "social orientation" (i.e., the degree of how many social expressions experts include in their reviews) does not have a significant effect on consumers' product evaluations. In summary, the lexical properties of the product reviews were defined according to each relevant factor. Then, the influence of each linguistic factor of expert reviews on the consumers' final evaluations was tested. In addition, a test was performed on whether each linguistic factor influencing consumers' product evaluations differs depending on the lexical features. The results of these analyses should provide guidelines on how individuals process massive volumes of unstructured data depending on lexical features in various contexts and how companies can use this mechanism from their perspective. This paper provides several theoretical and practical contributions, such as the proposal of a new methodology and its application to real data.
Journal of the Korea Academia-Industrial cooperation Society
/
v.11
no.9
/
pp.3311-3317
/
2010
This study compared South and North Korean broadcasting languages to measure the language differences due to the long segregation. This study would provide fundamental database on the language uses between South and North Korea. The KLIWC analyzed the text that was selected from news clips of South and North Korean broadcasting agencies. The results showed that North Korean languages were significantly different from South in terms of affective, cognitive, and social words. In addition, North Korean broadcasting used more person pronoun and a part of speech than South Korean broadcasting. Psychological interpretations were provided based on the language differences.
The purpose of this study is to analyze the writing tasks included in the newly developed high school English textbooks in the aspects of genre, rhetorical structure, task type, and authenticity in order to find out whether these tasks could contribute to improving Korean EFL students' writing skills. A total of nine textbooks were selected for the study and every writing task in each textbook was analyzed. The results show that various types of genres were incorporated in the tasks, but very few opportunities were provided for students to acquire characteristics of specific genres. In terms of rhetorical structure of text, narration, illustration, and transaction were required most, whereas not a single writing task asked students to use classification or cause and effect. Many of the writing tasks analyzed offered linguistic and/or content support through the use of models, which displays traces of the product-based approach to teaching writing. Lastly, most of the tasks lacked authenticity represented by explicit discussion of purpose and audience. Implications for L2 writing task development and writing instruction in the Korean EFL context are discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.