• Title/Summary/Keyword: Linewidth enhancement factor

Search Result 11, Processing Time 0.023 seconds

Variations of the Linewidth Enhancement Factor of Strained MQW DFB Laser with Output Power (Strained MQW DFB 레이저의 광출력에 따른 Linewidth Enhancement Factor의 변화)

  • 오윤경;곽계달
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.15-20
    • /
    • 1998
  • The linewidth enhancement factor $\alpha$ and fiber dispersion of 1.55 ${\mu}{\textrm}{m}$ strained multi-quantum well laser diodes are measured using small signal power modulation transfer function in a dispersive fiber. The measured fiber dispersion values are between 16.766 and 16.786ps/nm/km and these are the expected values from standard single mode fiber. To measure the $\alpha$ parameter in the actual operational range of the laser diodes, the dependence of $\alpha$ on laser output power is measured. The $\alpha$ parameter increases linearly as the power of the laser diode increases. This result can explain the non-linear gain effect on the $\alpha$ parameter more accurately than any other measurements.

  • PDF

Filamentation and α-factor of broad area laser diodes (대면적 레이저 다이오드의 필라멘테이션과 α-factor)

  • Han, Il-Ki;Her, Du-Chang;Lee, Jung-Il;Lee, Joo-In
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.319-323
    • /
    • 2002
  • 1.55 ${\mu}m$multi-quantum well (MQW) broad area laser diodes with different linewidth enhancement factors ($\alpha{-factor}$) of 2 and 4 were fabricated. The far-fields of the laser diodes were measured. It was observed that the full width at half maximum (FWHM) of the far-fields and the filamentations were reduced in the laser diodes for which the value of the $\alpha{-factor}$ was small. As injection current increased, the FWHM of the far-field also increased regardless of the a-factor. This phenomenon was explained by reduction of filament spacing as injection current increased.

The Effect of Laser Geometry and Material Parameters on the Single Mode Gain Difference in Quarter Wavelength Shifted DFB Laser above Threshold Current (문턱전류이상에서 구조 및 재료 변수들이 $\lambda$/4위상천이 DFB 레이저의 단일모드 이득차에 미치는 영향)

  • 이홍석;김홍국;김부균;이병호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.75-84
    • /
    • 1999
  • Systematic studies for the effect of the linewidth enhancement factor, the confinement factor, the internal loss and the cavity length on the single mode gain difference and the frequency detuning are performed for $\lambda$/4 phase shifted DFB lasers above threshold. The above threshold characteristics are mainly determined by the linewidth enhancement factor, not by the confinement factor or the parameter defined by the product of the linewidth enhancement factor and the confinement factor. The normalized internal loss defined by the product of the internal loss and the cavity length mainly determines the above threshold characteristics compared to that of the internal loss or the cavity length alone. The effect of the cavity length on threshold characteristics is larger than that of the internal loss in the case of the same normalized internal loss. The above threshold characteristics of quantum well lasers are more resistant to the variations of the confinement factor and the normalized internal loss than those of bulk lasers due to the small linewidth enhancement factor.

  • PDF

Comparison of linewidth enhancement factor and differential gain of DFB-LDs with various active layter structures (활성층 구조에 따른 DFB-LD의 선폭확대계수 및 미분이득 비교)

  • 박경현;조호성;장동훈;이중기;김정수;이승원;김홍만;박형무
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.86-93
    • /
    • 1995
  • Linwidth enhancement factor .alpha., linwidth, chirping and differential gain characteristics were measured and compared for each DFB-LDs containing active layers composed of bulk, MQW, and S-MQW, respectively. .alpha. of 6, 4 and 3.2 and chirping measured under 2.5Gbps modulation of 1.29nm, 0.67nm and 0.48nm were given for DFB-LDs of bulk, MQW and S-MQW active layers, respectively. And S-MQW has the largest differential gin of 2.4*10$^{-15}$ cm$^{2}$ (S-MQW) compared to the of 5.4*10$^{-16}$ cm$^{2}$(bulk) and 8.6*10$^{-16}$ cm$^{2}$(MQW). Linewidth enhancement facter .alpha. of less than 2 is expected with p-type modulation doped S-MQW DFB-LD.

  • PDF

Characteristics of $1.3\;{\mu}m$ InAs/GaAs Quantum Dot Laser Diode for High-Power Applications (고출력 응용을 위한 $1.3\;{\mu}m$ InAs/GaAs 양자점 레이저 다이오드의 특성 연구)

  • Kim, Kyoung-Chan;Yoo, Young-Chae;Lee, Jung-Il;Han, Il-Ki;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.477-478
    • /
    • 2006
  • Characteristics of InAs/GaAs quantum dot (QD) ridge laser diodes (LDs) are investigated for high-power $1.3\;{\mu}m$ applications. For QD ridge LDs with a $5-{\mu}m$-wide stripe and a 1-mm-long cavity, the emission wavelength of 1284.1 nm, the single-uncoated-facet CW output power as high as 90 mW, the external efficiency of 0.31 W/A and the threshold current density of $800\;mA/cm^2$ are obtained. The linewidth enhancement factor ($\alpha$-factor) is successfully measured to be between 0.4 and 0.6, which are about four times as small values with respect to conventional quantum well structure. It is possible that this result significantly reduce the filamentation of far-field profiles resulting in better beam quality for high power operation.

  • PDF

Fabrication of High Speed Modulation Doped SMQW-PBH-DFB-LD (변조 도핑된 SMQW-PBH-DFB-LD의 고속변조 특성)

  • 장동훈;이중기;조호성;박경형;김정수;박철순;김흥만;편광의
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.228-232
    • /
    • 1995
  • We have made modulation doped SMQW-PBH-DFB-LD for high speed optical communications. The waveguide and barrier layers were doped by Zn with the concentration of $1.2 \times 10^{18}cm^{-1}$. Mean threshold current and slope efficiency were 24.88 mA (minimum 16 mA) and 0.197 mW/mA (maximum 0.275 mW/mA) respectively. Linewidth enhancement factor ($\alpha$) of MD-SMQW-PBH-DFB-LD was reduced than that of SMQW-PBH-DFB-LD. Linewidth enhancement factor of 1.8 owes to the large gain coefficient of modulation doped active layer. The resonance frequency was linearly increased with the square root of optical power. The resonance frequency in small signal modulation was measured as 8 GHz and -3 dB modulation bandwidth was 10 GHzat $46mA(I_{th}+30mA)$..

  • PDF

Optimization of multiple-quantum-well structures in 1.55.$\mu$ InGaAsP/InGaAsP SL-MQW DFB-LD for high-speed direct modulation (고속직접변조를 위한 1.55.$\mu$. InGaAsP/InGaAsP SL-MQW DFB-LD의 양자우물구조의 최적화)

  • 심종인;한백형
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.60-73
    • /
    • 1997
  • By introducing a compressive-strained quanternary InGaAsP quantum-wells instead of a conventional ternary InGaAs quantum-wells in 1.55.mu.m DFB-LD, the lasing performances canb e improved and the problems caused by the thickness non-uniformity and the compositional abruptness among the hetero-interpaces canb e relaxed. In this paper, we investigated an iptimum InGaAsP/InGaAsP multiple-quantum-well(MQW) structure as an active layer in a direct-modulated 1.55.mu. DFB-LD from the view point of threshold current, chirping charcteristics, and resonance frequency. The optimum compressive-strained MQW structure was revealed as InGaAsP/InGaAsP structure with strain amount of about 1.2%, number of wells $N_{w}$ of 7, well width $L_{w}$ of 58.agns.. The threshold current density J of 500A/c $m^{2}$, the linewidth enhancement factor a of 1.8, and differential resonance frequency of d $f_{r}$/d(I-I)$^{1}$2/=2GHz/(mA)$^{1}$2/(atI=2 $I_{th}$) were expected in 1.55.mu.m .gamma./4-shifted DFB-LD with the cavity length of 400.mu.m long and kL value of 1.25. These values are considerably improved ones compared to those of 1.55um DFB-LD with InGaAs/InGaAsP MQW which have enhancement factor and the resonance frequence frequency by the detuning of lasing wavelength and gain-peak wavelength. It was found that the linewidth enhancement factor of 20% and differential resonance frequency of 35% without the degradation of the threshold current density could be enhanced in the range of -15nm~-20nm detuning which can be realized by controlling the thickness and Incomposition of InGaAsP well. well.and Incomposition of InGaAsP well. well.

  • PDF

Quantum Dot Based Mode-Locked Diode Lasers and Coherent Buried Heterostructure Photonic Crystal Nano Lasers

  • Kim, Ji-Myeong;Delfyett, Peter;Notomi, Masaya
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.122-122
    • /
    • 2013
  • In this talk, some optical properties of quantum dot based mode-locked diode lasers and photonic crystal nano lasers will be discussed. Linewidth enhancement factor, chirp and interband injection locking technique of quantum dot mode-locked lasers will be presented. Also various types of photonic crystal buried heterostructure lasers toward coherent nano laser will be covered as well.

  • PDF

Fabrication of 1.55.$\mu\textrm{m}$ RWG-DFB-LDs and evaluation of its optical characteristics (1.55$\mu\textrm{m}$ RWG-DFB-LD 제작 및 광학 특성 평가)

  • 이중기;이승원;조호성;장동훈;박경현;김정수;황인덕;김홍만;박형무
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.73-80
    • /
    • 1995
  • We fabricated the 1.55.mu.m RWG-DFB-LD and measured its electrical and optical characteristics. Interference fringe of optical beams was used for grating formation and epi layers were grown by lower-temperature LPE. The fabricated RWG-DFB-LD operated in a single longitudinal mode with more than 30dB SMSR at 1543nm emitting wavelength and its threshold current was 40mA. The wavelength shift with operating temperature and characteristic temperature T$_{o}$ were 0.9${\AA}/^{\circ}C$ and 59K, respectively. Linewidth enhancement factor .alpha. and linewidty.optical power product were estimated as 6.15 and 60MHz$\cdot$mW respectively.

  • PDF