• Title/Summary/Keyword: Linearized model

Search Result 427, Processing Time 0.021 seconds

A Study on Vibration Control Performance of Macpherson Type Semi-Active Suspension System (맥퍼슨 타입 반 능동 현가장치의 진동제어 성능 고찰)

  • Dutta, Saikat;Han, Chulhee;Lee, TaeHoon;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.157-164
    • /
    • 2016
  • The paper studies a comparison analysis of semi-active control strategies for a Macpherson strut type suspension system consisting of MR(magneto-rheological) damper. As a first step, in order to formulate governing, a dynamic full model of a Macpherson strut is developed considering the kinematics. The nonlinear equation of motion of the strut is then linearized around the equilibrium point. A new adaptive moving sliding model controller is developed for fast response of the system. A newly proposed adaptive moving sliding mode control strategy is then compared with conventional sliding mode controller and skyhook controller. The comparison is made for two different types of road inputs; bump and random road profiles showing superior vibration control performance in time and frequency domains.

Rotor Track and Balance of a Helicopter Rotor System Using Modern Global Optimization Schemes (최신의 전역 최적화 기법에 기반한 헬리콥터 동적 밸런싱 구현에 관한 연구)

  • You, Younghyun;Jung, Sung Nam;Kim, Chang Ju;Kim, Oe Cheul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.524-531
    • /
    • 2013
  • This work aims at developing a RTB (Rotor Track and Balance) system to alleviate imbalances originating from various sources encountered during blade manufacturing process and environmental factors. The analytical RTB model is determined based on the linear regression analysis to relate the RTB adjustment parameters and their track and vibration results. The model is validated using the flight test data of a full helicopter. It is demonstrated that the linearized model has been correlated well with the test data. A hybrid optimization problem is formulated to find the best solution of the RTB adjustment parameters using the genetic algorithm combined with the PSO (Particle Swarm Optimization) algorithm. The optimization results reveal that both track deviations and vibration levels under various flight conditions become decreased within the allowable tolerances.

Computational Analysis of Three-Dimensional Turbulent Flow Around Magnetically Levitated Train Configurations in Elevated Track Proximity (고가궤도에 근접한 자기부상열차 형상 주위의 3차원 난류유동에 대한 수치해석)

  • Maeng, J.S.;Yang, S.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.9-25
    • /
    • 1994
  • In the present study, the Reynolds-averaged Navier-Stokes equations, together with the equations of the $k-{\varepsilon}$ model of turbulence, were solved numerically in a general body-fitted coordinate system for three-dimensional turbulent flows around the six basic shapes of the magnetically levitated train(MAGLEV). The numerical computations were conducted on the MAGLEV model configurations to provide information on shapes of this type very near the elevated track at a constant Reynolds number of $1.48{\times}10^{6}$ based on the body length. The coordinate system was generated by numerically solving a set of Poisson equations. The convective transport equations were discretized using the finite-analytic scheme which employed analytic solutions of the locally-linearized equations. A time marching algorithm was employed to enable future extensions to be made to handle unsteady and fully-elliptic problems. The pressure-velocity coupling was treated with the SIMPLER-algorithm. Of particular interests were wall effect by the elevated track on the aerodynamic forces and flow characteristics of the six models calculated. The results indicated that the half-circle configuration with extended sides and with smooth curvature of sides was desirable because of the low aerodynamic forces and pitching moment. And it was found that the separation bubble was occured at wake region in near the elevated track.

  • PDF

Wave control fuction and friction damping of a pile-supported floating body (말뚝계류식 부유체의 파랑제어 기능과 마찰감에 관한 연구)

  • 김헌태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 1997
  • The floating body discussed in this study is a 2-D rectangular floating unit supported by four vertical piles at its corners. Structures of this type are frequently seen as floating piers for the crafts in a small harbour. The movement in some modes of motion of such a flating body is fully or partially restrincted by the piles. The authors(Kim et al. 1994) carried out a series of model tests on its wave control function, its motion and the loads on piles. The experimental results showed that a certain degree of intial constriction force which clamps the floating unit in the horizontal direction can effectively reduce the body motion and wave energy without increasing mooring forces. This may be due to the friction forces occuring between the piles and the rollers installed in the mooring equipments on the floating unit. In this paper, we develop a numerical model for the prediction of wave transformation and floating body motions, where the friction force is idealized as the Coulomb friction and linearized into a damping force using the equivalent damping cofficient. This linearization is verified by comparing the results of motions between the linear and nonlinear analysis of the ezuations of motion. We further compare the caculation results by the linear model with the experimental results and discuss the effect of the friction force or the constriction force on body motions and wave energy dissipation.

  • PDF

Study on the Rolling Noise Model Using an Analysis of Wheel and Rail Vibration Characteristics (철도 차륜 및 레일 진동 특성 해석을 통한 전동 소음 모델 연구)

  • Jang, Seungho;Ryue, Jungsoo
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.175-182
    • /
    • 2013
  • Rolling noise is an important source of noise from railways; it is caused by wheel and rail vibrations induced by acoustic roughness at the wheel/rail contact. To reduce rolling noise, it is necessary to have a reliable prediction model that can be used to investigate the effects of various parameters related to the rolling noise. This paper deals with modeling rolling noise from wheel and rail vibrations. In this study, the track is modeled as a discretely supported beam by regarding concrete slab tracks, and the wheel vibration is simulated by using the finite element method. The vertical and lateral wheel/rail contact forces are modeled using the linearized Hertzian contact theory, and then the vibration responses of the wheel and rail are calculated to predict the radiated noise. To validate the proposed model, a field measurement was carried out for a test vehicle. It was found that the predicted result agrees well with the measured one, showing similar behavior in the frequency range between 200 and 4000 Hz where the rolling noise is prominent.

Multi Label Deep Learning classification approach for False Data Injection Attacks in Smart Grid

  • Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2168-2187
    • /
    • 2021
  • The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.

Finite Element Analysis for Multiple Floating Breakwaters (다열 부유식 방파제의 유한요소 해석)

  • 정신택;박우선;이호찬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.257-264
    • /
    • 2002
  • This paper is concerned with the analysis of wave reflection and transmission from multiple floating breakwaters. Linear potential theory was used for modeling wave field, and the behaviors of the floating breakwaters was represented as linearized equation of motions. The boundary value problem for the wave field was discretized by Galerkin technique. The radiation condition at infinity was modeled as infinite elements developed by Park et al.(1991). The validation of the developed model was given through the comparison with hydraulic experimental data conducted by Park et al.(2000). The possibility for the application of multiple floating breakwaters was also discussed based on the numerical experiments.

Internal pressure dynamics of a leaky and quasi-statically flexible building with a dominant opening

  • Guha, T.K.;Sharma, R.N.;Richards, P.J.
    • Wind and Structures
    • /
    • v.16 no.1
    • /
    • pp.61-91
    • /
    • 2013
  • An analytical model of internal pressure response of a leaky and quasi-statically flexible building with a dominant opening is provided by including the effect of the envelope external pressure fluctuations on the roof, in addition to the fluctuating external pressure at the dominant opening. Wind tunnel experiments involving a flexible roof and different building porosities were carried out to validate the analytical predictions. While the effect of envelope flexibility is shown to lower the Helmholtz frequency of the building volume-opening combination, the lowering of the resonant peak in the internal and net roof pressure coefficient spectra is attributed to the increased damping in the system due to inherent background leakage and envelope flexibility. The extent of the damping effects of "skin" flexibility and background leakage in moderating the internal and net pressure response under high wind conditions is quantified using the linearized admittance functions developed. Analytical examples provided for different combinations of background leakage and envelope flexibility show that alleviation of internal and net pressure fluctuations due to these factors by as much as 40 and 15% respectively is possible compared to that for a nominally sealed rigid building of the same internal volume and opening size.

A Gait Implementation of a Biped Robot Based on Intelligent Algorithm (지능 알고리즘 기반의 이족 보행로봇의 보행 구현)

  • Kang Chan-Soo;Kim Jin-Geol;Noh Kyung-Kon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1210-1216
    • /
    • 2004
  • This paper deals with a human-like gait generation of a biped robot with a balancing weight of an inverted pendulum type by using genetic algorithm. The ZMP (Zero Moment Point) is the most important index in a biped robot's dynamic walking stability. To perform a stable walking of a biped robot, a balancing motion is required according to legs' trajectories and a desired ZMP trajectory. A dynamic equation of the balancing motion is nonlinear due to an inverted pendulum type's balancing weight. To solve the nonlinear equation by the FDM (Finite Difference Method), a linearized model of equation is proposed. And GA (Genetic Algorithm) is applied to optimize a human-like balancing motion of a biped robot. By genetic algorithm, the index of the balancing motion is efficiently optimized, and a dynamic walking stability is verified by the ZMP verification equation. These balancing motion are simulated and experimented with a real biped robot IWR-IV. This human-like gait generation will be applied to a humanoid robot, at future work.

Robust Gain Scheduling Based on Fuzzy Logic Control and LMI Methods (퍼지논리제어와 LMI기법을 이용한 강인 게인 스케줄링)

  • Chi, Hyo-Seon;Koo, Kuen-Mo;Lee, Hungu;Tahk, Min-Jea;Hong, Sung-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1162-1170
    • /
    • 2001
  • This paper proposes a practical gain-scheduling control law considering robust stability and performance of Linear Parameter Varying(LPV) systems in the presence of nonlinearities and uncertainties. The proposed method introduces LMI-based pole placement synthesis and also associates with a recently developed fuzzy control system based on Takagei-Sugenos fuzzy model. The sufficient conditions for robust controller design of linearized local dynamics and robust stabilization of fuzzy control systems are reduced to a finite set of Linear Matrix inequalities(LMIs) and solved by using co-evolutionary algorithms. The proposed method is applied to the longitudinal acceleration control of high performance aircraft with linear and nonlinear simulations.

  • PDF