• Title/Summary/Keyword: Linearized equation

Search Result 218, Processing Time 0.019 seconds

Minimum Entropy Deconvolution을 이용한 지하수 상대 재충진양의 시계열 추정법

  • 김태희;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.574-578
    • /
    • 2003
  • There are so many methods to estimate the groundwater recharge. These methods can be categorized into four groups. First groupis related to the water balance analysis, second group is concerned with baseflow/springflow recession, and third group is interested in some types of tracers; environmental tracers and/or temperature profile. The limitation of these types of methods is that the estimated results of recharge are presented in the form of an average over some time period. Forth group has a little different approach. They use the time series data of hydraulic head and specific yield evaluated from field test, and the results of estimation are described in the sequential form. But their approach has a serious problem. The estimated results in forth typeof methods are generally underestimated because they cannot consider the discharge phase of water table fluctuation coupled with the recharge phase. Ketchum el. at. (2000) proposed calibrated method, considering recharge- and discharge-coupled water table fluctuation. But the dischargeis considered just as the areal average with discharge rate. On the other hand, there are many methods to estimate the source wavelet with observed data set in geophysics/signal processing and geophysical methods are rarely applied to the estimation of groundwater recharge. The purpose this study is the evaluation of the applicability of one of the geophysical method in the estimation of sequential recharge rate. The applied geophysical method is called minimum entropy deconvolution (MED). For this purpose, numerical modeling with linearized Boussinesq equation was applied. Using the synthesized hydraulic head through the numerical modeling, the relative sequenceof recharge is calculated inversely. Estimated results are very concordant with the applied recharge sequence. Cross-correlations between applied recharge sequence and the estimated results are above 0.985 in all study cases. Through the numerical test, the availability of MED in the estimation of the recharge sequence to groundwater was investigated

  • PDF

Pole Placement Method of a Double Poles Using LQ Control and Pole's Moving-Range (LQ 제어와 근의 이동범위를 이용한 중근의 극배치 방법)

  • Park, Minho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.20-27
    • /
    • 2020
  • In general, a nonlinear system is linearized in the form of a multiplication of the 1st and 2nd order system. This paper reports a design method of a weighting matrix and control law of LQ control to move the double poles that have a Jordan block to a pair of complex conjugate poles. This method has the advantages of pole placement and the guarantee of stability, but this method cannot position the poles correctly, and the matrix is chosen using a trial and error method. Therefore, a relation function (𝜌, 𝜃) between the poles and the matrix was derived under the condition that the poles are the roots of the characteristic equation of the Hamiltonian system. In addition, the Pole's Moving-range was obtained under the condition that the state weighting matrix becomes a positive semi-definite matrix. This paper presents examples of how the matrix and control law is calculated.

Hydrologic Response Analysis Considering the Scale Problem : Part 1. Derivation of the Model (규모문제를 고려한 수문응답의 해석 : 1. 모형이론의 유도)

  • 성기원;선우중호
    • Water for future
    • /
    • v.28 no.4
    • /
    • pp.185-194
    • /
    • 1995
  • The objective of this study is to explore scale problem and to analyze the relations between scale and geomorphologic parameters of the rainfall-runoff model. Generally, measurement and calculation of geomorphologic parameters rely on and are sensitive to the resolution of source information available. Therefore, rainfall-runoff models using geomorphologic parameters should take account of the effects of the map scale used in their development. The derived rainfall-runoff model considering scale problem in this research is the GIUH type model, that is a basin IUH consisting of the channel network response and hillslope response. The cannel network response is computed by means of the diffusion analogy transformed from linearized St. Venant equation and hillslope response is calculated by 2-parameter gamma distribution function. Representing geomorphologic structure of the channel network and initial distribution of its response is width function. This width function is derived by fractal theory and Melton's law to consider scale problems and is weighted by the source location function (SLF) proposed in this research to increase the applicability.

  • PDF

Modeling and State Observer Design for Roll Slip in Cold Cluster Mills (냉간압연 다단 압연기의 롤 슬립 모델링 및 상태 관측기 설계)

  • Kang, Hyun Seok;Hong, Wan Kee;Hwang, I Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1543-1549
    • /
    • 2012
  • This study focuses on the state space model and the design of a state observer for the slip dynamics between rolls in STS cold cluster mills. First, a mathematical model of the roll slip is given as a nonlinear differential equation. Then, by using a Taylor series expansion, it is linearized as a state space model. Next, by using Gopinath's algorithm, a minimal-order state observer based on the state space model is designed to estimate the angular speed of all idle rolls except for an actuated roll that is measureable. Finally, a computer simulation is used to validate that the proposed state space model very well describes slip dynamics between, and moreover, the state observer very well estimates the angular speed of the idle roll.

Nonlinear Flutter Analysis of Missile Fin considering Dynamic Stiffness of Actuator (구동장치의 동강성을 고려한 미사일 조종날개의 비선형 플러터 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In;Han, Jae-Hung;Shin, Young-Suk;Lee, Yeol-Wha
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.54-59
    • /
    • 2005
  • Nonlinear aeroelastic analyses of a missile control fin are performed considering backlash and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces, and aerodynamic forces are approximated by the minimum-state approximation. For nonlinear flutter analysis backlash is represented by a free-play and is linearized by using the describing function method. Also, dynamic stiffness is function of frequency and is calculated by solving equation of motion for actuator. The linear and nonlinear flutter analyses show that the aeroelastic characteristics are significantly dependent on the backlash and dynamic stiffness. From the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below the linear divergent flutter boundary. The nonlinear flutter characteristics and the nonlinear aeroelastic responses are also investigated in the time domain.

Super-Cavitating Flow Problems about Two-Dimensional Symmetric Strut (2차원 대칭 스트럿 주위의 초월 공동 유동 문제의 해석)

  • Y.G.,Kim;C.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.15-26
    • /
    • 1990
  • This paper describes a potential-baoed panel method formulated for the analysis cf a supercavitating two-dimensional symmetri strut. The method employs normal dipoles and sources distributed on the foil and cavity surfaces to represent the potential flow around the cavitating hydrofoil. The kinematic boundary condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the fictitious inner flow region of the foil, and the dynamic boundary condition on the cavity surface is satisfied by requiring that the potential vary linearly, i.e., the tangential velocity be constant. Green's theorem then results in a potential-based integral equation rather than the usual velocity-based formulation of Hess & Smith type, With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with improved accuracy compared to those of the linearized lifting surface theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. This iteration process is repeated until the results are converged.

  • PDF

Mathematical Modeling and Simulation for Steady State of a 75-ton Liquid Propellant Rocket Engine (75톤급 액체로켓엔진 정상상태 과정의 수학적 모델링 및 시뮬레이션)

  • Lee, Kyelim;Cha, Jihyoung;Ko, Sangho;Park, Soon-Young;Jung, Eunhwan
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.6-12
    • /
    • 2017
  • This paper deals with mathematical modeling of a 75-ton open-cycle Liquid Propellant Rocket Engine (LPRE) and the steady state simulation based on a nominal operating point. Each component of open-cycle LPRE may be classified into seven major categories using thermodynamics and dynamics characteristics. To simplify the simulation model of LPRE in this paper, we used four govern equations with assuming no heat transfer process. We confirmed the mathematical model of LPRE by using the error ratio and comparing the experiment data and simulation data in steady state, and checked the stability with the linearized model. Finally, we demonstrated the simulation model as compared to the transient response of experimental data.

Optical flow of heart images by image-flow conservation equation and functional expansion (영상유체보존식과 함수전개법에 의한 심장영상의 광류)

  • Kim, Jin-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1341-1347
    • /
    • 2007
  • The displacement field (Optical flow) has been calculated by bottom-up approaches based on local processing. In contrast with them, in this paper, a top-down approach based on expanding in turn from the lowest order mode the whole motion in an image pair of sequential images is proposed. The intensity of medical images usually represents a quantity which is conserved during the motion. Hence sequential images are ideally related by a coordinate transformation. The displacement field can be determined from the generalized moments of the two images. The equations which transform arbitrary generalized moments from a source image to a target image are expressed as a function of the displacement field. The appareent displacement field is then computed iteratively by a projection method which utilizes the functional derivatives of the linearized moment equations. This method is demonstrated using a pair of sequential heart images. For comparative evaluation, we applied Horn and Schunck's method, a standard multigrid method, and our proposed algorithm to sequential image.

A First-principles Study on the Effects on Magnetism of Si Impurity in BCC Fe by Considering Spin-orbit Coupling (스핀-궤도 상호작용을 고려한 Si 불순물이 BCC Fe의 자성에 미치는 영향에 대한 제일원리연구)

  • Rahman, Gul;Kim, In-Gee;Chang, Sam-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.211-216
    • /
    • 2008
  • The effects of Si impurity on electronic structures and magnetism of bcc Fe are investigated by using a first-principles method by considering spin-orbit coupling. In order to describe the Si impurity, a 27 atomic bcc Fe supercell has been considered. The Kohn-Sham equation was solved in terms of the all-electron full-potential linearized augmented plane wave (FLAPW) method within the generalized gradient approximation (GGA). The effects of spin-orbit coupling were calculated self-consistently by considering spin-diagonal terms based on second variation method. For the ferromagnetic (FM) state without considering SOC, the spin magnetic moment of the Si impurity was calculated to be $-0.143{\mu}B$, while the magnetic moments of Fe atoms were calculated to be $2.214{\mu}B$, $2.327{\mu}B$, and $2.354{\mu}B$ in away from the Si atom, respectively. However, the FM state with considering SOC, the spin magnetic moment of the Si impurity was calculated to be $-0.144{\mu}B$, which is not affected significantly by SOC, but the spin magnetic moments of Fe atoms were calculated $2.189{\mu}B$, $2.310{\mu}B$, and $2.325{\mu}B$, respectively, which are much reduced value compared to those of the FM state without SOC. Comparing the total charge density and spin density, those features are thought to be originated by the screening distortions of the Fe $t_{2g}$ orbital, which can be obtained by considering SOC.

Mass Transfer during Salting and Desalting Processes of Chinese Cabbage (배추의 염절임 및 탈염 공정중 물질이동)

  • Kim, Dong-Kwan;Kim, Myung-Hwan;Kim, Byung-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.317-322
    • /
    • 1993
  • The diffusion phenomena of water, solid and reducing sugar in Chinese cabbage during salting (5$0^{\circ}C$, 25% salt solution) and desalting (5$0^{\circ}C$, distilled water) were investigated. Water loss and solid gain during salting were rapid in the first 6hrs and then almost leveled off. After 24hrs of salting, water loss and solid gain in 100g of initial wet Chinese cabbage were 33.35g and 6.26g respectively. Moisture content was changed from 94.29% to 83.11% during 24hrs of salting. The reducing sugar concentration was also changed from 29.2 mg/$m\ell$ to 6.5mg/$m\ell$, which was linearized as a function of the square root of salting time and showing that Y=30.1841-5.0269√t. After 24hrs salting, water gain and solid loss during desalting were rapid in the first 4hrs and then increased linearly. After 12hrs of desalting, the water gain and solid loss in 100g of initial wet Chinese cabbage were 20.82g and 9.14g respectively. The amount of solid loss after 12hrs desalting was higher than that of solid gain after 24hrs salting due to the diffusion of solute presented initially in the Chinese cabbage during salting and desalting. The concentration of salt in Chinese cabbage after 12hrs desalting was 2.98% which was a suitable salt concentration for the preparation of Kimchi. At this time, the concentration of reducing sugar was only 1.6mg/$m\ell$. The linear regression equation of reducing sugar concentration during desalting was Y=6.7854-1.5992√t.

  • PDF