DOI QR코드

DOI QR Code

Mathematical Modeling and Simulation for Steady State of a 75-ton Liquid Propellant Rocket Engine

75톤급 액체로켓엔진 정상상태 과정의 수학적 모델링 및 시뮬레이션

  • Lee, Kyelim (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Cha, Jihyoung (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Ko, Sangho (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Park, Soon-Young (Rocket Engine Development Office, Korea Aerospace Research Institute) ;
  • Jung, Eunhwan (Rocket Engine Development Office, Korea Aerospace Research Institute)
  • 이계림 (한국항공대학교, 항공우주 및 기계공학부) ;
  • 차지형 (한국항공대학교, 항공우주 및 기계공학부) ;
  • 고상호 (한국항공대학교, 항공우주 및 기계공학부) ;
  • 박순영 (한국항공우주연구원, 발사체 엔진팀) ;
  • 정은환 (한국항공우주연구원, 발사체 엔진팀)
  • Received : 2017.08.07
  • Accepted : 2017.09.19
  • Published : 2017.10.31

Abstract

This paper deals with mathematical modeling of a 75-ton open-cycle Liquid Propellant Rocket Engine (LPRE) and the steady state simulation based on a nominal operating point. Each component of open-cycle LPRE may be classified into seven major categories using thermodynamics and dynamics characteristics. To simplify the simulation model of LPRE in this paper, we used four govern equations with assuming no heat transfer process. We confirmed the mathematical model of LPRE by using the error ratio and comparing the experiment data and simulation data in steady state, and checked the stability with the linearized model. Finally, we demonstrated the simulation model as compared to the transient response of experimental data.

본 논문은 75톤급 개방형(Open-cycle) 액체로켓엔진(Liquid Propellant Rocket Engine, LPRE)의 수학적 모델링 및 정상상태(Steady state)에서의 시뮬레이션을 수행한 내용을 다룬다. 액체로켓엔진의 각 구성품들은 열역학 및 동역학적 특성을 이용하여 크게 7개로 분류할 수 있으나, 본 논문의 액체로켓엔진 시뮬레이션 모델을 간단화하기 위해 열전달 모델링을 생략하여 4개의 지배방정식(Govern equation)을 이용하였다. 정상상태에서의 실험 데이터와 시뮬레이션 데이터의 오차율을 통해 모델링을 확인하였으며 공칭 작동점에서의 선형화 모델을 이용하여 안정성을 판단하였다. 또한, 시뮬레이션 모델링을 검증하기 위해 실험 데이터의 과도응답을 비교하였다.

Keywords

References

  1. K. L. Lee, J. H. Cha and S. H. Ko, "A Survey on Fault Detection and Diagnosis Method for Open-Cycle Liquid Rocket Engines through China R&D Case," Journal of The Society for Aerospace System Engineering, vol. 11, no. 3, pp. 22-30, June 2017.
  2. J. H. Cha, S. H. Ko, "A Review of Space Shuttle Main Engine Dynamic Modeling for Start-Up Transient Simulation," Proc. of 46th KSPE Spring Conf., pp. 454-457, May 2016.
  3. P. C. Lozano-Tovar, Dynamic models for Liquid Rocket Engines with Health Monitoring Application, Master's Thesis, Massachusetts Institute of Technology, Boston, June 1998.
  4. J. Wu, Y. Zhang and Q. Chen, "A real-time verification system on fault Diagnosis methods for liquid propellant rocket engine," Proc. of the 32nd AIAA/ASMESAE/ASEE Joint Propulsion Conference, Lake Buena Vista, FL, AIAA-96-2831, Jul. 1996.
  5. J. Wu, Y. Zhang and Q. Chen, "Transient Performance Simulation of a Large Liquid Rocket Engine under Fault Conditions," Journal of Aerospace Power of China, vol. 9, no. 4, pp. 361-365, 1994.
  6. S. Y. Park, W. K. Cho and W. S. Seol, "A Mathematical Model of Liquid Rocket Engine Using Simulink," Korea Aerospace Engineering and Technology, vol. 8, no. 1, pp. 82-97, July 2009.
  7. C. S. Ha, S. H. Oh, J. H. Cha and S. H. Ko, "Basic modeling and analysis for the operation of Space Shuttle Main Engine," Proc. of KSAS Fall Conf., pp. 1573-1576, Nov. 2014.