• 제목/요약/키워드: Linearized Theory

검색결과 150건 처리시간 0.024초

근사 비선형 궤환 선형화를 이용한 도립 진자 계통의 제어 (The Control of Inverted Pendulum System Using Approximated Nonlinear Feedback Linearization)

  • 이종용;이상효
    • 한국통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.372-384
    • /
    • 1993
  • 로보트 제어와 로케트의 자세 제어에 관련하여 도립 진자 시스템은 제어 이론과 응용면에서 흥미 있는 문제이다. 일반적으로 도립 진자 시스템을 제어하기 위하여 소신호 모델에 의한 근사화 모델이 사용되었다. 본 논문에서는 미분 다양체 이론을 기초로 한 비선형 제어 이론을 도입 진자 시스템에 적용하고자 한다. 먼저 비선형 모델을 비선형 상태 궤환을 이용하여 근사 선형화 모델로 변환시키고, 선형화 모델에 극점 배치를 통하여 선형 제어기를 설계하였다. 컴퓨터 시뮬레이션을 통하여 제안된 기법을 Tayler 급수의 3차 선형화모델과 비교하였다.

  • PDF

On Effects of Large-Deflected Beam Analysis by Iterative Transfer Matrix Approach

  • 신중호
    • 한국기계연구소 소보
    • /
    • 통권18호
    • /
    • pp.131-136
    • /
    • 1988
  • A small-deflected beam can be easily solved by assuming a linear system. But a large-deflected beam can not be solved by superposition of the displacements, because the system is nonlinear. The solutions for the large-deflection problems can not be obtained directly from elementary beam theory for linearized systems since the basic assumptions are no longer valid. Specifically, elementary theory neglects the square of the first derivative in the beam curvature formula and provides no correction for the shortening of the moment-arm cause by transverse deflection. These two effects must be considered to analyze the large deflection. Through the correction of deflected geometry and internal axial force, the proposed new approach is developed from the linearized beam theory. The solutions from the proposed approach are compared with exact solutions.

  • PDF

SMES를 포함하는 전력계통의 비선형현상 해석에 관한 연구 (A Study of Nonlinear Behaviors in Power Systems with SMES)

  • 안병학;이병준
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.379-387
    • /
    • 1999
  • In general, solving or analyzing nonilinear dynamical equations is very difficult and requires special techniques. To avoid these difficulties, systems are generally linearized in an attempt to predict their begavior. These linearized equations, however, may not predict true system behavior. Therefore, the nonlinear dynamical analysis using bifurcation theory may become a fundamental framework in understanding nonlinear situation in power systems. In this paper, we propose a systematic procedure based on a bifurcation theory to analyze nonlinear behaviors in power systems. We show usefulness of our procedure by applying 3-bus model system. In addition, we consider nonlinear model of SMES and verify the effect of SMES in power system's nonlinear behaviors.

  • PDF

현수교 초기장력이 고유주기 산정에 미치는 영향 (Effect of Initial Tension on Natural Periods for a Suspension Bridge)

  • 김호경;이재홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.450-454
    • /
    • 2003
  • Natural periods are usually determined by the so-called linearized finite displacement theory even for a suspension bridge. This linearized method, with formulating structural stiffness by taking dead-load tension into consideration, calculates the natural periods of the bridge. As a result, the assumed initial tensions for each cable member may affect the accuracy of calculated natural periods and some other dynamic responses. This paper mainly demonstrates the effect of initially introduced tension accuracy on the evaluation of dynamic characteristics for a suspension bridge.

  • PDF

신경회로망을 이용한 능동형 현가장치 제어기 설계 (The Design of Neuro Controlled Active Suspension)

  • 오정철;김영배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.414-419
    • /
    • 1994
  • In recent years, there has been an increasing intest in control of active automotive suspension systems with a goal of improving the ride comfort and safety. Many approaches for these purposes have used linearized models of the suspension's dynamics, allowing the use of linear control theory. However, the linearized model does not well descriibe the actual system behavior which is inherently nonlinear. The object of this study is to develop a neuro controlled active suspension for the ride quality improvement. After obtaining active control law using optimal control theory, we use the artificial neural network to train the neuro controller to learn the relation of road input and control force. Form the numerical results, we found that back propagation learning does show good pattern matching and vertical acceleration of the driver's seat and sprung mass.

  • PDF

기하학적 비선형성을 고려한 종단 질량을 갖는 회전하는 외팔보의 모달 분석 (Modal Analysis for the Rotating Cantilever Beam with a Tip Mass Considering the Geometric Nonlinearity)

  • 김형래;정진태
    • 한국소음진동공학회논문집
    • /
    • 제26권3호
    • /
    • pp.281-289
    • /
    • 2016
  • In this paper, a new dynamic model for modal analysis of a rotating cantilever beam with a tip-mass is developed. The nonlinear strain such as von Karman type and the corresponding linearized stress are used to consider the geometric nonlinearity, and Euler-Bernoulli beam theory is applied in the present model. The nonlinear equations of motion and the associated boundary conditions which include the inertia of the tip-mass are derived through Hamilton's principle. In order to investigate modal characteristics of the present model, the linearized equations of motion in the neighborhood of the equilibrium position are obtained by using perturbation technique to the nonlinear equations. Since the effect of the tip-mass is considered to the boundary condition of the flexible beam, weak forms are used to discretize the linearized equations. Compared with equations related to stiffening effect due to centrifugal force of the present and the previous model, the present model predicts the dynamic characteristic more precisely than the another model. As a result, the difference of natural frequencies loci between two models become larger as the rotating speed increases. In addition, we observed that the mode veering phenomenon occurs at the certain rotating speed.

유체를 이송하는 직선관의 진동 해석을 위한 새로운 비선형 모델링 (New Non-linear Modelling for Vibration Analysis of a Straight Pipe Conveying Fluid)

  • 이수일;정진태;임형빈
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.514-520
    • /
    • 2002
  • A new non-linear modelling of a straight pipe conveying fluid is presented for vibration analysis when the pipe is fixed at both ends. Using the Euler-Bernoulli beam theory and the non-linear Lagrange strain theory, from the extended Hamilton's principle are derived the coupled non-linear equations of motion for the longitudinal and transverse displacements. These equations of motion are discretized by using the Galerkin method. After the discretized equations are linearized in the neighbourhood of the equilibrium position, the natural frequencies are computed from the linearized equations. On the other hand, the time histories for the displacements are also obtained by applying the generalized-$\alpha$ time integration method to the non-linear discretized equations. The validity of the new modelling is provided by comparing results from the proposed non-linear equations with those from the equations proposed by Paidoussis.

유체 유동을 갖는 직선관의 진동 해석을 위해 새로운 비선형 모델링 (New Non-linear Modelling for Vibration Analysis of Straight Pipe Conveying Fluid)

  • 이수일;정진태;임형빈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.372-377
    • /
    • 2001
  • A new non-linear of a straight pipe conveying fluid is presented for vibration analysis when the pipe is fixed at both ends. Using the Euler-Bernoulli beam theory and the non-linear Lagrange strain theory, from the extended Hamilton's principle are derived the coupled non-linear equations of motion for the longitudinal and transverse displacements. These equations of motion for are discretized by using the Galerkin method. After the discretized equations are linearized in the neighbourhood of the equilibrium position, the natural frequencies are computed from the linearized equations. On the other hand, the time histories for the displacements are also obtained by applying the $generalized-{\alpha}$ time integration method to the non-linear discretized equations. The validity of the new modeling is provided by comparing results from the proposed non-linear equations with those from the equations proposed by $Pa{\ddot{i}}dousis$.

  • PDF

신경회로망 조정기를 이용한 상호 연결된 비선형 시스템의 비집중 제어 (Decentralized control of interconnected nonlinear systems using a neural coordinator)

  • 정희태;전기준
    • 전자공학회논문지B
    • /
    • 제33B권6호
    • /
    • pp.208-216
    • /
    • 1996
  • This paper presents a decentralized control scheme for interconnected systems with unmodeled nonlinearities and interactions using a neural coordinator. The interactions due to the interconnection and the unmodeled nonlinearity associated with each subsystem are represented by the deviations from linearized states of decomposed subsystems. the decentralized controller is composed of local controllers and a neural coordinator. The local controller for each subsystem is derived from linearized local system parameters y linear optimal control theory. the neural cooridnator generates a corrective control signal to cancel the effect of deviation sthrough the backpropagation learning with the rrors obtained form the difference of the local system outputs and reference model outputs. the reference model consists of the part of local system without deviations. The effectiveness of the proposed control scheme is demonstrated by simulation studies.

  • PDF

적응 입출력 선형화 기법을 이용한 Brushless DC Motor의 강인한 속도 제어 (Robust Speed Control of Brushless DC Motor Using Adaptive Input-Output Linearization Technique)

  • 김경화;백인철;문건우;윤명중
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.89-96
    • /
    • 1997
  • A robust speed control scheme for a brushless DC(BLDC) motor using an adaptive input-output linearization technique is presented. By using this technique, the nonlinear motor model can be linearized in Brunovski canonical form, and the desired speed dynamics can be obtained based on the linearized model. This control technique, however, gives an undesirable output performance under the mismatch of the system parameters and load conditions. For the robust output response, the controller parameters will be estimated by a model reference adaptive technique where the disturbance torque and flux linkage are estimated. The adaptation laws are derived by the Popov's hyperstability theory and positivity concept. The proposed control scheme is implemented on a BLDC motor using the software of DSP TMS320C30 and the effectiveness is verified through the comparative experiments.

  • PDF