• Title/Summary/Keyword: Linearization Method

Search Result 484, Processing Time 0.027 seconds

A Research on the Bandwidth Extension of an Analog Feedback Amplifier by Using a Negative Group Delay Circuit (마이너스 군지연 회로를 이용한 아날로그 피드백 증폭기의 대역폭 확장에 관한 연구)

  • Choi, Heung-Gae;Kim, Young-Gyu;Shim, Sung-Un;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1143-1153
    • /
    • 2010
  • In this paper, we propose an alternative method to increase the distortion cancellation bandwidth of an analog RF feedback power amplifier by using a negative group delay circuit(NGDC). A limited distortion cancellation bandwidth due to the group delay(GD) mismatch discouraged the use of feedback technique in spite of its powerful linearization performance. With the fabricated NGDC with positive phase slope over frequency, the feedback amplifier of the proposed topology experimentally achieved adjacent channel leakage ratio(ACLR) improvement of 15 dB over 50 MHz bandwidth at wideband code division multiple access(WCDMA) downlink band when tested with 2-carrier WCDMA signal. At an average output power of 28 dBm, ACLR of 25.1 dB is improved to obtain -53.2 dBc at 5 MHz offset.

Implementation of Linear Power Amplifier with 1.9 GHz for PCS Basestation (1.9 GHZ PCS 기지국용 선형 전력증폭기의 제작)

  • Kim, Sang-Ki;Bang, Sung-Il
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.88-96
    • /
    • 2003
  • In this paper, We designed and implemented a linear high-power amplifier which can be used for the commercial service in band of $1.9GHz(1.93{\sim}1.99GHz)$ at U.S.A. The output power of the implemented linear high power amplifier is 25W. In order to satisfy IMD characters decided by FCC, the Feedforward linearization techniques has been used. The used feedforward method has improved the IMD characteristics from 10.51dBc to 19.01dBc in each power level from 1W(30dBm) to 25W(44dBm). The IMD level of the final output shows from minimum 64.84dBc to maximum 68.17dBc. Because this good characteristics of IMD, the LPA is expected to use as a commercial product of PCS base station.

  • PDF

Optimization of Design Variables of Detection Algorithm for Loss of Balance Using a Linear Internal Model (균형상실의 검출 성능 향상을 위한 내부 모델의 설계변수 선정 및 민감도 평가)

  • Kim, Kwang-Hoon;Kim, In-Su;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1153-1160
    • /
    • 2010
  • The detection algorithm for loss of balance had three main parts: one for processing data, another for constructing an internal model, and a third for detecting the loss of balance. The part related to the internal model is the most important part of the algorithm. The purpose of this study is to evaluate the effect of variables associated with the internal model on the success rate of the algorithm. The internal model depends on the type of linearization adopted and the operating period of the algorithm. The design variables were evaluated by performing sensitivity analysis of the variables of the internal model in order to obtain the success rate of the algorithm. The results showed that the most sensitive variable was the period and the period of 0.3 s yielded the highest success rate of 97.1%. Further, the ranges of the design variables that can facilitate a success rate of over 95% are presented.

Influence of the Francis Turbine location under vortex rope excitation on the Hydraulic System Stability

  • Alligne, S.;Nicolet, C.;Allenbach, P.;Kawkabani, B.;Simond, J.J.;Avellan, F.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.286-294
    • /
    • 2009
  • Hydroelectric power plants are known for their ability to cover variations of the consumption in electrical power networks. In order to follow this changing demand, hydraulic machines are subject to off-design operation. In that case, the swirling flow leaving the runner of a Francis turbine may act under given conditions as an excitation source for the whole hydraulic system. In high load operating conditions, vortex rope behaves as an internal energy source which leads to the self excitation of the system. The aim of this paper is to identify the influence of the full load excitation source location with respect to the eigenmodes shapes on the system stability. For this, a new eigenanalysis tool, based on eigenvalues and eigenvectors computation of the nonlinear set of differential equations in SIMSEN, has been developed. First the modal analysis method and linearization of the set of the nonlinear differential equations are fully described. Then, nonlinear hydro-acoustic models of hydraulic components based on electrical equivalent schemes are presented and linearized. Finally, a hydro-acoustic SIMSEN model of a simple hydraulic power plant, is used to apply the modal analysis and to show the influence of the turbine location on system stability. Through this case study, it brings out that modeling of the pipe viscoelastic damping is decisive to find out stability limits and unstable eigenfrequencies.

Effect of Energy Loss by a Vertical Slotted Wall (직립 슬릿벽에 의한 에너지 손실효과)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.295-303
    • /
    • 2015
  • The eigenfunction expansion method is appled for the wave scattering by a vertical slotted, where both the inertial and quadratic drag terms are involved. Quadratic drag term representing the energy loss is linearized by the application of socalled equivalent linearization. The drag coefficient, which was empirically determined by Yoon et al.(2006) and Huang(2007) is used. Analytical results are verified by comparison to the experimental results conducted by Kwon et al.(2014) and Zhu and Chwang(2001). Using the developed design tool, the effect of energy loss by a vertical slotted wall is estimated with various design parameters, such as porosity, submergence depth, shape of slits and wave characteristics. It is found that the maximum value of energy loss across the slotted wall is generated at porosity value less than P = 0.1. The present solutions can provide a good predictive tools to estimate the wave absorbing efficiency by a slotted-wall breakwater.

Design of a Predistorter with Multiple Coefficient Sets for the Millimeter-Wave Power Amplifier and Nonlinearity Elimination Performance Evaluation (다중계수 방식을 적용한 밀리미터파 대역용 전력증폭기의 사전왜곡기 설계 및 비선형성 보상 성능 평가)

  • Yuk, Junhyung;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.740-747
    • /
    • 2015
  • Recently, mobile communication systems using the millimeter-wave frequency band have been proposed, and the importance of efficient compensation of the nonlinearity caused by 60 GHz high-power amplifiers(HPAs) is increasing. In this paper, we propose a predistorter structure based on multiple coefficient sets which are separately used to different ranges of input power values. These ranges correspond to varying levels of nonlinearity characteristics. The structure is applied to the 60 GHz HPA FMM5715X and the performance of correcting the nonlinearity of LTE signals is evaluated. Evaluation results using a hardware testbed demonstrate that the proposed predistorter structure achieves the maximum of 6 dB gain over the conventional method in terms of the adjacent channel leakage ratio(ACLR).

A Nonlinear Speed Control of a Permanent Magnet Synchronous Motor Using a Sequential Parameter Auto-Tuning Algorithm for Servo Equipments (서보 설비를 위한 순차적 파라미터 자동 튜닝 알고리즘을 사용한 영구자석 동기전동기의 비선형 속도 제어)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.114-123
    • /
    • 2005
  • A nonlinear speed control of a PMSM using a sequential parameter auto-tuning algorithm for servo equipments is presented. The nonlinear control scheme gives an undesirable output performance under the mismatch of the system parameters and load conditions. Recently, to improve the performance, an adaptive linearization scheme, a sliding mode control and an observer-based technique have been reported. Although a good performance can be obtained, the performance is not satisfactory any more under specific conditions such as a large inertia variation, a fast speed transient or an increased sampling time. The simultaneous estimation of principal parameters giving a direct influence on speed dynamics is generally not simple. To overcome this problem, a a sequential parameter auto-tuning algorithm at start-up is proposed, where dominant parameters are estimated in a prescribed regular sequence based on the method that one parameter is estimated during each interval. The proposed scheme is implemented on a PMSM using DSP TMS320C31 and the effectiveness is verified through simulations and experiments.

STATION-KEEPING MANEUVERS FOR A GEOSTATIONARY SATELLITE USING LINEAR QUADRATIC REGULATOR (선형제차조절법을 이용한 정지궤도 위성의 위치보존 궤도조정)

  • 이선익;최규홍;이상욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.142-149
    • /
    • 1997
  • This paper applied one of the well-known optimal control theory, namely, linear quadratic regulator(LQR), to the station-keeping maneuvers(SKM) for a geostationary satellite. The boundary conditions to transfer the system with a good accuracy at a terminal time were based upon the predicted orbital data which are created due to the Earth's non-uniform mass distribution's effect during 14 days and due to luni-solar effect during 28 days. Through the linearization of the nonlinear system equation with respect to reference orbit and the numerical integration of Riccati equation, the optimal trajectories and the corresponding control law have been obtained by using LQR. From the comparison of ${\Delta}V$ obtained by LQR with the ${\Delta}V$ obtained anatically by geometric method, Station Keeping Maneuvers(SKM) via LQR may provide comparable results to a real system. Furthermore it will demonstrate the possibility in fuel optimization and life extension of geostationary satellite.

  • PDF

A Synchronized Job Assignment Model for Manual Assembly Lines Using Multi-Objective Simulation Integrated Hybrid Genetic Algorithm (MO-SHGA) (다목적 시뮬레이션 통합 하이브리드 유전자 알고리즘을 사용한 수동 조립라인의 동기 작업 모델)

  • Imran, Muhammad;Kang, Changwook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.211-220
    • /
    • 2017
  • The application of the theoretical model to real assembly lines has been one of the biggest challenges for researchers and industrial engineers. There should be some realistic approach to achieve the conflicting objectives on real systems. Therefore, in this paper, a model is developed to synchronize a real system (A discrete event simulation model) with a theoretical model (An optimization model). This synchronization will enable the realistic optimization of systems. A job assignment model of the assembly line is formulated for the evaluation of proposed realistic optimization to achieve multiple conflicting objectives. The objectives, fluctuation in cycle time, throughput, labor cost, energy cost, teamwork and deviation in the skill level of operators have been modeled mathematically. To solve the formulated mathematical model, a multi-objective simulation integrated hybrid genetic algorithm (MO-SHGA) is proposed. In MO-SHGA each individual in each population acts as an input scenario of simulation. Also, it is very difficult to assign weights to the objective function in the traditional multi-objective GA because of pareto fronts. Therefore, we have proposed a probabilistic based linearization and multi-objective to single objective conversion method at population evolution phase. The performance of MO-SHGA is evaluated with the standard multi-objective genetic algorithm (MO-GA) with both deterministic and stochastic data settings. A case study of the goalkeeping gloves assembly line is also presented as a numerical example which is solved using MO-SHGA and MO-GA. The proposed research is useful for the development of synchronized human based assembly lines for real time monitoring, optimization, and control.

A Study on Identification using Particle Swarm Optimization for 3-DOF Helicopter System (3-자유도 헬리콥터 시스템의 입자군집최적화 기법을 이용한 시스템 식별)

  • Lee, Ho-Woon;Kim, Tae-Woo;Kim, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.105-110
    • /
    • 2015
  • This study proposes the more improved mathematical model than conventional that for the 3-DOF Helicopter System in Quanser Inc., and checks the validity about the proposed model by performance comparison between the controller based on the conventional model and that based on the proposed model. Research process is next : First, analyze the dynamics for the 3-DOF helicopter system and establish the linear mathematical model. Second, check the eliminated nonlinear-elements in linearization process for establishing the linear mathematical model. And establish the improved mathematical model including the parameters corresponding to the eliminated nonlinear-elements. At that time, it is used for modeling that Particle Swarm Optimization algorithm the meta-heuristic global optimization method. Finally, design the controller based on the proposed model, and verify the validity of the proposed model by comparison about the experimental results between the designed controller and the controller based on the conventional model.